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Systematic singular triangulations of all Seifert manifolds
WFES FHETF HOKE

AWILIL, BETFTEORIXEN—RIZLTWVWETODT,
1. Introduction EAZMIZEER & 2o TWETHR, TAMKE
%3 2

1 Introduction

EB DM 3 RILLHREIZIL, AL 1 O Tdh 5 singular triangulations B7FET S ([1] &8
fR) . TN % one-verter triangulation & FEE Z L1235 . A& T, £TD Seifert manifold
M Zxt LT) £ DR S(Fm b; (alaﬂl)7 (a2aﬂ2)7 R} (an+1: ﬂn+1)) A E’) M @ one-vertex
triangulation 2K $ 5 FEER~3.

ZOWRFHEE RS &, Seifert manifold M @ one-vertex triangulation X, { L, R, L, R}
DERF (word) THREND (Section8 ZBM) . iz, L' X4/ L(p, q) X, ¢/p DES
HREBIZBER L {L,R} ® word TR EN D (Section6 #B ) .

ZDBBRIFHEITRO & 5 REBEZ PN T WS, #aIZ, {L,R,L,R} £® word iz3f L
T, BITHE & TN E. 2 bl 3-regular graph G #E# T35 (Section?2, 8 #ZM) . &k
IZ, B3 OBERICTEDAENT G, 0 B} OR—H5ME fo %ML Z L &FT. Bg, £BO
Seifert manifold M i LT, {L,R,L,R} £® word KEFEL T, ZD word IZ k> TEH &
% graph G < FA—8RER fo 2%, B¥/fe B M LREETH Y, (0B3)/fc 23 M @ special
spine & 725 Z L %R Y. special spine ?® dual cell complex i% one-vertex triangulation C
$»BM D, M D one-vertex triangulation BB b= Z LIz 5 (Section9 B H) .

EESBAYITIE, 3-regular graph G »b¥E»h 3 0B LOR—HE#®HEZHAVT, 3KTE
Wik M (2 B3/fc) #BTTBZ L3 LVWI & Cidiav. #lxiE, quaternionic space @
3-regular graph {Z X 3R FIIEK 2] D 19 12HB. TN HDRFRFERH LT, KBET
RYRTRFEIRD 2RIZBVT, HFLL, AHTH 5.

12k, M O fiber ERALNTHBZ L THB. EEDO M IZH LT, M = B3/fg &
72% 3-regular graph G 28 Li=D M, ZD G i2iZ, E-cycle & FEIEH 3 cycle e BTETE
$%. E-cycle DEHIL [3]-[6] 5 B. ZD E-cycle e DHED 1 5& LT, R NOB{IHK B3
DEFRIZ, e=0B3N{z=0} 2B X512 GEZREDRAALL &, XJ M /02 TER
Eh B flow I L > T M @ fiber structure #5 1 D&% 3. #lxiF, Figure1 iX quaternionic
space DRI TH Y, E-cycle ix X1 X2Y1Y2212, T B.

b 5 121, M ® Dehn surgery 2 &R LT W2 & Th 5. £8P Seifert manifold M
i3 LT, M @ singular fiber iZ¥ - 7z Dehn surgery iZ & - T#% 54 5 manifold M’ i,
M=Bfcblad/577 GO—BERYVEEXLIFT7 G ItkoT, M = B3/fo 72
5. Pl 5 &, Figure2 D7 7 712 X » TR &N TV % manifold 1%, Figurel % J 7iZ
Lo THREIN TV S manifold %, (2,1) type singular fiber (Z# - 7= —1 Dehn surgery L=
manifold T 3.

L, FRETORTHIEZAS L, fibered solid, (S? — (D2 U D? U D?))xS?, (S1xS!
—-D?) x 8§ iz LT, _Z b AAE Turaev-Viro invariant % %4 % = & 28 TX, Seifert
manifold @ Turaev-Viro invariant 23, ZH 5 DRI FAOABIZ X > TEHEESID ([7)%
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Figure 1: Graphical representation of Figure 2: Dehn surgery along a singular
quaternionic space - fiber

BR) . £, SRESHREITHT2H /72 complexity THE T ay 7 ¥RERTES (g
2BR) .

2 Definition of solid torus Ty, r)

In this section, we define a word diagram for a word on the letters {L, R, L, R} denoted
by w(L, R). After we define a w(L, R)-solid torus.

The the directed labeled 3-regular graphs shown in Figure 3, Figure 4, Figure 5, Figure 6
and Figure 7 are called L - ring, L - ring, R - ring, R -ring and ¢ - diagram respectively. Let
W be a word X1 X3+ X;,, where X; € {L, R, L, R}. We define a W-diagram inductively.

In the case n = 0, W-diagram is defined as ¢-diagram. Then we define a W-diagram
in the case n = 1.

Definition 2.1 For a word W = X, where X € {L,R,L,R}, the W-diagram is defined
by the following two steps:

1. Identzfy the circle a By a1 B~1y~1 of the ¢ - diagram and the circle o ﬂ' P
+'~1 of the X -ring such that the directed edges a, B, v and o, B, 7 are identified
respectively.

2. Delete the edge a, B, v of the ¢ - diagram and o/, B, v of an X - ring.

An example in the case X = L is shown in Figure8. Then, we define a W-diagram in the
case n > 1.

Definition 2.2 Let W be a word X1Xz--- X, where X; € {L,R, l}, I-z}(l <i<n)
Suppose the W - diagram is defined. Then, for a word Xp41 € {L,R,L, R}, the W X4 -
diagram is defined by the following two steps:

2
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Figure 3: L-ring Figure 4: L-ring

1. Identify the circle a Bya~! B~ 4~ of the W -diagram and the circled/ /v o/ 1 g1
+' "1 of the Xpy1 - ring such that the directed edges a, B, v and o, B', v are identified
respectively.

2. Delete the edge a, B3, v of the W - diagram and o/, B, v of an Xp41 - ring.
We call such a diagram a word diagram and denote them by w(L, R) - diagram.

We assume that w(L, R)-diagram is embedded in S%2(% 8B3). Then the circle

afyatp!
7~ of w(L, R) - diagram separate S2 to two discs.

Notation 2.3 The disc which contains the edges of w(L, R) - diagram is denoted by D (L r)-
Another disc is denoted by Ey(L,R)-

For example, Dy is AUA UBUB UCUC'UDUT in Figure9.

Let fy(L,r) be an identification map on S? (=~ 9 B3) induced from the identifying the
directed labeled edges of w(L, R) - diagram. We give an example fr: the face A and A’
are identified by f; because both faces is bounded by the circle PQ of the L-diagram,
see Figure9.

We consider the manifold B3/ £y, g). In Proposition 2.6, we will show that B3/ f, r)
is solid torus for any word w(L, R). Before discussion, we prepare some lemmas.

Lemma 2.4 The manifold B3/f, collapses to S*, where f, is the identification map in
the case w(L, R) = ¢.

Proof. By the definition of f4, the boundary of B3/ f4 is E4/ f4. Thus, the manifold B3/ f¢A
collapses to the cell complex Dy/ fs from its boundary, where Dy is shown Figure 10. And

3
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Figure 5: R-ring Figure 6: R-ring

the cell complex Dy/ fy collapses to a cell complex Dy/fs, where Dy is shown Figure11.
Similarly, the cell complex Dy / fg collapses to a loop B/ fg, where B is the edge shown in

Figure 11. Thus, B3/f, collapses to S!. 1

Lemma 2.5 If the manifold B3/ f, ry collapses to S*, then the manifold B3/ fuL,R)x
collapses to S*, where X € {L,R,L,R}.

Proof.

1. Thecase X = L

The manifold B3/ fy,(1,ry1 is collapsed to a cell complex Dygz,ryz/ fu(z,ryr from
its boundary, where Dy, g1 is shown Figure12. It collapses to the cell complex
Dy, r)L/ fu(z,r)L from its boundary, where D:v( 1,r) is shown Figure13. Similarly,
the cell complex D:D( LR)L / fw(r,R)L collapses to the cell complex D;’,( LR)L /fw(z,R)L
where D:",( L,R)L is shown Figure14. At last, the cell complex DZ,(L, Rt/ fu(LR)L

collapses to a cell complex DZ,’( LR)L / fuw(L,r)L, Where D;’,’( L,R)L is shown Figure15.

By definition of fu(z,r)s Dyz,ryr/fue,R)L 18 Dy, gy/ fu(r,r)- By assumption of
induction, D"y r)/ fw(z,r) collapses to S. Thus, My, gy collapses to S*.

. The case X € {R,L,R}

By collapsing B;'f,( L.R) x/ fw(z,m)x from its boundary similar to the case 1, the proof
completes. L }

Proposition 2.6 For any word w(L, R), the manifold B3/ Jw(L,R) s homeomorphic to a
solid torus.



(21

Figure 7: ¢-diagram

Proof. By Lemma2.4 and Lemma2.5, B3/ fw(L,R) collapses to S!. Thus, B3/ Jw(L,R) I8
homeomorphic to a solid torus or a solid Klein bottle. By the definition of ¢ - diagram and
L,R, L, R-ring, the manifold B3/ fw(z,R) is orientated. Thus, B3/ fw(r,R) is solid torus. g

The solid torus B3/, g) is called a w(L, R) solid torus and denoted by Tyz,r)-

Proposition 2.7 For any solid tours Ty r), the 0-curve shown in Figure 16 is embedded
in 8T y(r,R) such that 0Ty r)\ (@ UBU~) is homeomorphic to an open 2-disc.

Proof. Recall E,,(; r), see Notation 2.3. By definition of T, R), the boundary of T’y r)
is Ey(L,R) / fuw(r,r)- Thus, f-curve is embedded in 8Ty, gy such that 8Ty, r) \ (a U
B U «) is homeomorphic to an open 2-disc. 1

Notation 2.8 The edges a, 8,7 of the f-curve embedded in OT( gy are denoted by

(L, R)» Bu(L,R)» Yuw(L,R) Tespectively. Then, cuy(r, R)Bu(L,R)> Bw(L,R)Yu(L,R)» Vew(L,R)Cw(L,R)
are loops embedded in 0Ty, r). We denote them by Tw(L,R)s Yw(L,R)s w(L,R) Tespec-
tively. And their homotopy class in m1(T'y(z,r)) or m1(8 Tyw(r,Rr)) are denoted by [Ty R) ],

[yw(L,R) , [Zw( L,R) ] respectively.

Proposition 2.9 There ezists two loops ='y(1,r) and ¥ (1, r) embedded in 8Ty, R) Sat-
isfying the following conditions:

(a) Two loops 'L, r) and Yy (L r) intersect at one point in 0T (L R);

(b) Two loops z'yy1 gy and Yw(z,r) are homotopic to the loops Tw(L,R) N4 Yu(L,R) N
0T (L ,r) Tespectively.
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Figure 8: L-diagram Figure 9: Df,

The homotopy class of three loops Tu(L,r), Yw(L,R)s Zw(L,R) in T (O Tw(L,r)) are satisfies
the following condition:

(c) [zwer,r)] = [Yw,r) [ Zue,r) ]
Proof.

(a)(b)

(c)

By Proposition 2.7, the neighborhood of the edge By z,r) in 8 Tz, Rr) are (3) or (ii)
shown in Figurel7. In the case (ii), there exists a face bounded by afa. This
is contradiction because the boundary of E, gy is afya~1f71y~1. Thus, the
neighborhoodof By(z,r) is (i). Thereby, in 8Ty (z, gy, two loops ey, r)Bu(L,R) (=:
Tu(L,R)) a0d Bu(L,R)Yuw(L,R) (=: Yw(,r)) are homotopic to the loops ' y(z,r) and
¥'w(L,R) respectively shown in (x).

We get the following relation in m1(0 Ty (z,p)):x
[zwiz,Rr)] = [Ywer) @  wer)
[Yw(z,R) Buw,r) B w(,R) @ wL,R)]
= [Yw(zRr) Bu(r,r) (Cw(r,R) Buwrr) )]

By (a) and (b), two loops ay,z,r) Buw(z,r) and V(L R) Bw(L,r) are homotopic to the
two loops which intersects at one point. Thus, we have,

[zwz,R)] = [YwERr) Bur,r)lwi,r) Bur.r) ™

Remark 2.10 By Proposition 2.9 (a),(b), any loop embedded in OT,, L g) is represented
by the element a[Zy(1,r) |+b [Yw(z,R) | in M (0 Ty(L r) ) uniquely for some a,b € Z because
the fundamental group of 8T, r) is commutative.
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Now we consider the manifold obtained from an X -ring, where X = L, R, L R. Assume
that an X -ring is embedded in S% (= 6 B3).

Notation 2.11 In S? in which an X - ring is embedded, the disc E', the annulus A and the
disc E := S\ (E'UA)) shown in Figure 18 are denoted by E, Ay and Ey respectively.

Let f4 be an identification map on S? (= 8 B%) induced from the identifying the directed
labeled edges of X -ring.

Proposition 2.12 Both E, [ fz and Ez [ fg are homeomorphic to S' x S'. And ¢'-
curve shown in Figure 19 and 6-curve shown in Figure 16 are embedded in ES{ /fz and
Ey [ f3 respectively such that both (E" [T\ (@ UB'UY) and (Ez/fz)\ (@UBU7Y) are
homeomorphzc to an open 2-disc.

Proof. The proof is similar to Proposition2.7. - ]
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Figure 18: E', A, FE

For integers k11 k?a k3) ey kn—2, k‘n—l) km

(k1 )

ke 1
-1 ks 1
d(k11k2’k3$'”,kn—2akn—l)kn) = fe, e, ., )
-1 knp—2 1

where the empty element is 0;

D(kla k2) k3’ crey kn—2) kn—lv kn)
:= the determinant of the matriz d( ki, ko, k3, ... , kn—2, kn-1, kn );
D j( k1, ko, k3, ... , kn—2, kn-1, kn)
:= the determinant of the matriz derived i-row and j-colimn of d( ki, ka, ... , kn—1, kn)-

Lemma 3.2 Let A[n] := { a1, az, ... ,an—1, an } be a finite sequence of a natural number
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and the matriz U( A[n]) is defined as follows:

_ [ DoUpURUPE ... UPr2UR- U (n: odd)
U(Aln]) = { UoUP UG UR --- U™ U U (n : even)

_ ( Xy Y )
X# Y# )
Then, U( A[n]) satisfies the following conditions:

(a) The case n is even

Xy =—Dni1,n41 (a1, ..., @0, 1); Xy=—Dnyons2 (0,01, ..., an, 1);
Y,= _Dn,n+1 (a'la cory On, 1); Y[J = _Dn+1,n+2 (O) a1y + ¢+ 5 Gn, 1)1
XY, — XY = —1;

—D(ali ceey Ony 1)XIJ+D(01 ayy + -y Cn, 1)X,\ = -1

—D(ay, ..., an, l)Y,"i-D(O, @1y ..., G, 1)Y) =—1.

(b) The case n is odd

X)= Dn,n+1 (ala ceey On, 1); Xy. = Dn+1,n+2 (Oa aiy ... 4 Qn, 1);
YA=Dnpi1,ns1 (@1, ..., 80, 1); Yy=Dpyont2(0,01,...,an,1);
XY, — X, Yy =-1; '

=D (a1, ..., a0, 1)X,+D(0, a1, ..., an, 1)X) =-1;

-D (a1, ..., a5, 1)Y,+D(0,ay,...,an, 1)y =-1.

(1)
(2)
(3)

(4)
(5)
(6)

Proof. We prove by mathematical induction on n. For convenience, we use the following

notations: )
D' := D(al» az, ..., Gn-2, An—1, 1); D= D(al, @2, +.., Gn-1, Gn, 1))
DY = D(01 a1, G2, -.. , Gp-2, Gn-1, 1); D*:= D(O, ai, a2, ..., Gn-1, Qn, 1);
DI;,J = Di,j(ala a2y ..., Qp-2, Qn—1, 1); D‘i,j = Di,j(a'la a2, ..., Gpn—1, Qn, 1)7
D*Ii,j = D;,J-(O, ai, @z, ... , Gn—1, 1); D*i,j = Di,j(O, ai, @2y ..., Qn, 1).

1. The case n > 2
Suppose the case n — 1 is satisfied. Then, we will show the case n.

(a) The case n is even
We assume that

D, D
Ul(Aln—1 = n—1,n nn )
( [n ]) ( D*In,n+1 D*’n+l,n+1

_ (Xi Y:()
X, v, )

XY -Xy] = -1
~-D'X,+D¥X, = -1
-DY,+D"Y, = -l

10
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Then, we will show

_ =Dn41,n41 —Dn,nt1 )
U( A[n] ) - ( —D* n+2,n+2 -D* n+1,n+2

Xy Y
- (23)
X\Y, - XYy = -1 (8)
-D'X,+D¥X) = -1; 9)
-D'Y,+D*Y, = - (10)

i. We show equation (7)
By definition of U( A[n]),

(’}g: 2) = U(An-1])(Ur)™
S (BE)( )

_ (Xi—anYA' Y)")
X, —aY, Y,

-

By calculation of matrix and determinant, we have

"‘,Dn+1, n+l
a1 1
-1 a 1
-1 asg 1

-1 ap— 0 -1

Thus, we obtain

X, = X,'\—anY;
= D'n—l,n—anD,n,n

= —Dnt1,nt1-

Similarly, we have Y\ = =Dy n41, Xp = —D* ny2, n42, Y,=-D*ni1,n42-

11
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ii. We show equation (8)

XoYa-XYa = (Xh—-an¥})Y) — (X, - anY])Y]
XY~ an¥3Y, ~ KLY + en¥,Y,
XY - X\y}

-1.

iii. We show equations(9) and (10).
Expanding the determinant D and D* with respect to the n + 1-th column
and n + 2-th column respectively, we get D = Dyyi1,nt1 = Dpynyy and
D* = Dpy2,nte — Dpt1,n+2. Thus, we have

—-DXy+D*'Xy = —(Dnpi1,n+1 — Dp,n41 )D:z+1,n+2
+(Dn+2,n+2 - Dn+1,n+2 )Dn, n+1
—Dn+1,n-|'-1 D’:1+1, n+2 T Dn+2.n+2 Dn. n+1

_},)\Xp + YAXp
-1.
=DY,+D'Y\ = —(Dnt1i,nt1 —Dpni1 ) Do, nt2

* *
+(Dhs2,n42 — Dota,ne2 ) Drtl net
* *
D n,n+1 D n+4+2,n+2 — D n+1,n42 D n+l1,n4+1
XyY, - XY,
= -1.

(b) The case n is odd
By calculations of determinants, equations (4), (5) and (6) will be proven sim-
ilarly to the case (a).

Thereby, the rest of proof is to show the case n = 1.

2. Thecasen=1
We get

u(all)) = UoUr®
- (v 1) 1)
- (v %)

12
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On the other hand, we have

0 1
Xy=Dyz (a1, 1) =~ Xu=D2,3(0,a1,1)=| 0 -1 .=0;

0 1
Y,\=D2,2(a1,1)=a1; Y,,=D3,3(0,a1,1)= 1 a =1;

X\Y, =X, Yy =(-1)-1-0-a, = —1.

Now we show another lemma. We use the following notation for the fractional expan-

sion:

[kl, k2,""kn—1,kn]:= -

ky + 1

k
2 + 1

.'+E

In the following lemma, the equation (a) and (b) is shown in [9).
Lemma 3.3 For a finite sequence of integer { k1, k2, ..., kn }, we have (a) and (b).

(a) D(kl, ks, ...,kn)=k1D(k2, ks, ...,kn)+D(k3, k4, ,kn)

D(0, ki, ko, ...,
(8) Tk bz, ot B = D((k1lk22... knk;)'

For a finite sequence of natural number { ki, ke, ... , kn }, we get (c)-(g):

(c) D(O0, ki, kg, ..., kn) >0, D(ky, k2, ..., kn) > 0.

(d) D(O, k1, k2, ..., kn) and D (ky, ko, ..., ks ) are coprime.

(e) D(0, k1, ka, ... , kn, =1) <0, D (ky, ko, ... , kn, —=1) < 0.

(f) =D (0, k1, ko, ..., kn, —1) and —D (ky, ko, ... , kn, —1) are coprime.

(9) Dny1,nt1 (@1, ..., Gn) and =Dy ny1 (@1, ... , @n) are coprime.

(h) —Dyy2,nt2 (@1, .-y @n) and D}y oo (@1, ..., an) are coprime.
For a pair of coprime natural number p,q(p > q), we obtain (h):

(i) We choose a sequence of natural numbers { k1, ks, ... , kn } such that g¢/p =
[k1, k2, ... ykn—1, kn, 1]. Then we have

Dn+l,n+l(kla k?a ey km 1)_Dn,n+1(kl: k2a vy km 1) =p

13
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Proof.

(a) We expand D (ky, ko, ..., kn) with respect to 1-column.

D(kl,k%'“’kn)

ko 1 1 0

-1 %k 1 -1 k3 1

=k . . .

-1 kg 1
1k, 1k,

=k1D(k2$k31'°°1kn)+D(k37k41-“)kn)

-1 1 0
-1 kpy 1
-1 k,
=k1 D (kg, k3, ..., kn)+D(ks, kg, ..., kn) '
(b) We prove by mathematical induction on n. If n = 1, then we get l_)D(_((),k_:c_;_) = k_11 =

(c)

(d)

[k1]). Assume the case n — 1 is satisfied. Then, we have

D(01k13k2!°"akn) — OD(klsk27"’)kn)+D(k2’k3’---akn)
-D(kl’k%“"kn) le(k2ak3,"°)kﬂ)+D(k3,k41-“skn)

1
D (ks ksy ..., kn)
D(k2’k3s"'7kn)

1
D (0, ko, k3, ..., kn)

D kKo, oy F)

= [klth,“')kn—l,kn]-

ki +

We prove by mathematical induction on n. If n = 1, then we get D (k; ) = k; > 0.
If n = 2, then we have D (kj, ko) = kik2+1 > 0. Assume that the claim is satisfied
for all i < n. Then we will show the case n.

We get D(ky, ko, ..., kn) = ki D(ko, k3y ..., kn) + D (ks kg ..., kn) By the
assumption, we have D (ka, k3, ..., kn) > 0and D (k3, ks, ... , kn) > 0. Thus, we
have D (ky, ko, ... , kn) > 0.

By using (a), we obtain D (0, ki, kg, ..., kn) = D (ko, k3, ..., kn) > 0.

We prove by mathematical induction on n. If n = 1, then we get D (k;, —1) =
—k1 +1<0. If n =2, then we have D (ky, k2, —1) = —k1(1 — k2) — 1 < 0. Assume
that the claim is satisfies for all ¢ < n. Then we will show the case n.

14
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Weget D (ky, k2, ..., kn, —1) =k1D(k2, k3, ..., kn, —1)+D(k3, kay ...y kn, —1).
By the assumption, we have D (kg, ks, ... , kn, —1) < 0and D (ks, ks, ... , kn, -1)<
0. Thus, we have D ( ki, kg, ..., kn, —1) <0.

By using (a), we obtain D (0, k1, k2, ... , kn, =1) = D (ke, ks, . .- , kn, -1)<0.
(e) We prove by mathematical induction on n.

1. Thecasen=1
Since D (0, k1) =1 and D (k1) = k1, D (0, k1) and D (k) are coprime.
2. Assume that the case n — 1 is satisfied. Then we will show the case n.
We get

D(O, ki, ko, ... ,k,,) OD(kl, ko, ... ,kn)+D(k2, k3, ..., kn)
D(k27 k3a ”-)kn);
le(kz, ks, ..., kn)-i-D(kg, kgy ..., kn)

le(k21 ks, ..., ku)+D(0) k2, k3, ..., kn)-

D (ks, k3, ..., kn) and D (0, kg, ks, ... , kn ) are coprime by assumption. This
completes the proof.

D (ki koy ..., kn)

(f) The proof is similar to (e). We prove by mathematical induction on n.

1. Thecasen=1
Since —D(O, kl, —1) = 1 and —D(kl, —1) = kl -1, D(O, kl, —1) and
D (k;, —1) are coprime.

2. Assume that the case n — 1 is satisfies. Then we get

-D(0, ky, ..., kn, =1)=—=D(ks, ..., kn, -1).
—D(kyy ..., kn,-1)
=—kyD(kg, ..., kn, =1) =D (ks ..., kn, -1)
=k (=D (kg ..., kn, —1))+(=D(0, k2, ..., kn, -1)).

—D(ks, k3, ..., kn —1) and —D (0, kg, k3, ..., kn — 1) are coprime by as-
sumption. This completes the proof.

(g) By definition of D; ; (ki, ..., kn), we get

Dn+1,n+1 (al, ceoey an, 1) =D(a1, cee y an).

By calculation of determinant, we have

—Dpnt1 (@1, ..., 00, 1)=D(ay, ..., @n1)-
By Definition of D (ki, ..., kn),

D(al’ az, ... aan)=D(am An-1, - .. 1a1)’
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By (a), we have,

D(an—la an—2y .-, a'l)
= OD(an)an—l)“'1a1)+D(an—laa'n—21“"al)
= D(Oaa’naan—lin-aal)-

By (d), D(an, an-1,...,01) and D(O0, an, an—1, ..., a;) are coprime. Thus,
Dyy1,n+1 and _D’b n+1 are coprime.

(h) The proof is similar to (g).

. D(0, ky, ko, ... , kn, 1)
i) From (b), we get = k1, k2, ... ykn—1, kn, 1] = - " . B
() From (&), we get a/p = [k by .. b, by 1] = S0t I D), gy

(c) and (e), we have D (ki, k, ... , kn, 1) = p. Expanding D (ki1, k2, ..., kn, 1)
with respect to n + 1 column, we get our claim. 1

Lemma 3.4 For i = 1,2, let 9; be a O-curve shown in Figure 20 and T; be a torus.
Assume that there exists embeddings ¢; : 0; — T; such that T;\ ¢(6;) = Int (D? ). Then,
there exists a homeomorphism 12 : Ty — T such that p1a(e;) = oo, p12(41) = B and
p12(m) = 7.

Proof. Let @12 : §; — 02 be a map defined by identifying the oriented edges a1, 81, 11
and ag, B2, 72 respectively. Then, cutting off T; along ¢;(6;), we get the 2-disc D;-" shown
in Figure2l. Thus, the map @3 is extended to the homeomorphism &}, : D; — Ds
using Alexander trick. Thus, there exists a homeomorphism ¢33 : T} — T5. such that

p12(a1) = az, p12(B1) = B2 and p12(71) = 7e. 1
B

o ,
1 o; 7!

Figure 20: 6; )
Figure 21: D?

4 Relations between the elements of 7, (Ty ) and of w1 ( B3/ )

In this section, we consider the relations between the elements of the fundamental group
of B3/f % and Tj. Using those, we discuss about the meridian of T’z g) in section5.

First we prepare the following proposition. Recall the definition of Dyr,r) and Ay,
see Notation 2.3 and Notation 2.11 respectively.
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Proposition 4.1
1 Tyr,r)\ (0Tw,r) Y (Dy,r)/ fur,r))) is homeomorphic to an open 3-ball.
2. (B3f3)\ (0(B3/fg)U(Az/ fz)) is homeomorphic to an open 3-ball.
Proof.

1. Recall that Ty, g) is B3/ fw(,r). By definition, we have Ey g, gyUDyr,r) = 0B
and EyL.r) / fwiz,r) =0 ngL,R)- Thus, Tw(z,r) \ (8T wr,R)Y (Dwiz,r)/ fuir.r)))
is homeomorphic to B3\ 8 B3.

2. The proof is similar to the case 1. » ]

At first, we consider the fundamental group of a solid torus T. By Proposition4.1,
any loop embedded in Ty is homotopic to some loop embedded in Dy/fs. Thus, the
fundamental group of T is isomorphic to the fundamental group of Dy/fs. Recall the
notations z,(r,r) and Y (L,r), see Notation 2.8.

Proposition 4.2 Let [z4], [ys] be homotopy class of two loops x4, yg in m1(Ty) respec-
tively. Then, m1(Ty) is one generator free group and we get the following relations:

m(Ty) =< P | = >; [z¢] = P; [¥s] =0,

where the generator P is the representative element of the loop associated to edge P of
¢-diagram shown in Figure 7.

Proof. We choose a maximal tree for (Q U 3)/fs and fix a base point vp. Then, we get

7!'1(T¢, 'UO) = Wl(Dtﬁ/qua 'UO)

<a,v, P,A|Pla, Ay"1PAP !, A>
<a,P,vy|Pla,y PP 1>

= <P|->.

Thus, we have the following relation in (T, vp).

[z4] = [agfs] = [P]; (6] = [Bgs] = 0.
This relation depend on the choice neither of the base point nor of the maximal tree. 3

We consider the fundamental group of B3/f;, where X = L, R, L, R. Note that fx
is the identification map associated to the X - diagram and fy is the identification map
associated to the X -ring. Recall the notation a g, 8y, 7%, a’x, ﬂ;.(, '732’ see Notation 2.13.

Proposition 4.3 Let the elements [ax], [4x], [&x], [¥x] in m(B3/fz) be homotopy

class of the loops azBy, Bzvz, a’X,ﬁ}{, ,63.(7’).{, embedded in 8 (B3/fg) respectively.
Then, m1(B3/f3) is commutative group and we get the following relations in m1(B3/fz):

17



(134

1. Thecase X =L

[ar]=[aL]; [2]=—[&1]+[AL].
2. The case X = R |

[ar] = [&r] - [Yr]; [7r] = [4r]-
3. The case X =L

[az]=[a%]; (2] =[az]+ (4]
4. The case X = R

[ag] = [6%]+ [7&]; (%] = [9%]-

Proof.

l. Thecase X =L

By Proposition4.1, any loop embedded in B3/ fj, is homotopic to some loop em-
bedded in Az/f;. Thus, the fundamental group of B3/ f is isomorphic to the
fundamental group of A3 /f;.

We choose a maximal tree of Ay /f; for (QUPUAUS')/f; and fix a base point
v3. Then, we get

m1(Mp,v3) = mi(A;/fi.v3)
< o, v, B | dB, Ba, B, yB~1y™*
@ B, v ooy afyalglyt
< o, v, B | B, Ba, yB 1y} >
@, v Yoy, ayeiy?

—1 o 71—1
= a’, ! 07 @ C!,_"/ -
< Yy &Y a’7’a’ 1,)/ 1’ a,ya—l,y—l
= «d, ’Y’: a, ¥ I —a"*'a’ ’Y+0£'—")” >,
where <> means omitting commutative relations. This relation depends on neither
of the choice of the base point nor of the maximal tree.
2. Thecase X = R
We choose maximal tree of Ap/fs for (Q U P U A U §')/fs and we calculate
m(B3/f5) similar to the case 1.
3. Thecase X =L,R

‘We choose maximal tree of Ag/fg for (BU P U AU B)/fy and we calculate
m(B3/fz) similar to the case 1, where X = L, R 1

18
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5 Meridian and longitude of T, r)

In this section, we discuss the meridian and longitude of T'y(z, r), Where meridian mqy,(L,R)
of Ty(z,r) is defined as a loop embedded in 8 Tz, r) such that [Muwz,r)] = 0in 71 (Tw(z,R))
and longitude L,z ) of Ty r) is defined as a loop embedded in 0T y(L,r) such that
[lw,r)] # 0 in m1(Ty(z,r)) and ly(z,r) intersects my,(z, gy at one point in 0T y(L,R)-

Recall the loops Ty(L,R), Yw(z,r) embedded in 8Ty, R), see Notation2.8. By Re-
mark 2.10, any loop embedded in 3T, r) is represented by the element a [Tw(L,r)] +
b[yw(L,r)] (a,b € Z) uniquely. In Proposition 5.2 and Proposition 5.5, we decide the co-
efficient a, b in the case w(L, R) = ¢ and w(L, R) # ¢ respectively.

First we consider the case w(L, R) = ¢.
Notation 5.1 Two loops yg4 and w;l embedded in 8 Ty are denoted by m andl respectively.

Proposition 5.2 Let [m] and [1] be the homotopy class of the loops m and l. Then, we
get the following conditions:

1. The loop m is the meridian of Ty, that is, [m] = 0 in m(Ty);

2. The loop 1 is longitude of Ty, that is, [I] # 0 in m1(Ty) and two loops I and m are
homotopic to the two loops which intersect one point each other;

3. [24] = [l] +[m] in m (0 Ty).
Proof.
1. By Notation 5.1 and Proposition4.2, [m] = [yg] = 0 in 71(T}).

2. By Notation5.1 and Proposition4.2, [I] = [z4] # 0 in m(Ty). From Proposi-
tion2.9(a), (b), 4 and yy are homotopic to two loops intersecting at one point in
0Ty.

3. By Proposition 2.9(c), we have [z3] = [y4]|—[z4] in m(8 Ty). Thus, [24] = [I]+[m]
in m(0Ty). :

By Notation 5.1 and Proposition 5.2, we obtain the following relation in m1(T3).
t t
(f1) = () (5 2)
[9s] [m] 0 1
t
[¢] )
Vo, 11
() Joo v

where !( ) means transposition and Up is defined in Definition 3.1.
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Now, we consider the meridian and longitude of Ty(r,R) in the case the word w(L,R) #
¢. By Proposition 2.7, Proposition2.12 and Lemma 3.4, there exists a homeomorphism
¢ : 0T yr) — Ey/fy C 0 My, where My is B3/f4. The manifold obtained by gluing
Tw(z,r) and Mg by p is denoted by Ty(z,r) Yp M.

Lemma 5.3 For any word w(L,R) and X € {L,R,L, R}, the manifold Tu(z,r) Yp My
is homeomorphic to Tw,R)x- ' .

Proof. Recall the notation of E,, ) and E%, see Notation 2.3 and Notation2.11. By
definition of gluing map ¢, torus By, r)/fu(z,r) (C OTy(L,r)) and torus E' 3 /fs (C
OMy, ) are identified such that p(a) = o, p(8) = B, p(7) = 7, see Figure 22. Thus, the

manifold Tw( L,R) Yp M x is obtained from by B3/ fw(L, R)X- (]
TwLR) My Tow(L,r)x
/‘—_\

Figure 22: Gluing map ¢

By gluing map ¢, two loops ¢( Zy(z,r) ) and ¢ Yw(L,R) ) are embedded in T,z p)x, see
Figure 22. Thus, four loops ¢(2y(z,r) ), ¢(Yu(L, R) ) Tw(z,R)x and Yy (L r)x are embedded
in Ty(r,r)x- Thus, there exists integers a, b, c,d such that we get the following equations

in m(Tw(z,r)x):

[Zwe,rx] = ale(Twi,r )] +b[O(Yuz,r))];
[ywizmyx] = cle(zwe,r))]+d[o(Yuwi,r))]

The following proposition tells us the integers a,b,c,d. For convenience, we denote
O Tw(L,R) )s P(Yuw(L,R) ) BY Tw(L,R) Yuw(L,R) TesPectively.

Proposition 5.4 For any word w(L,R), homotopy class of the loops Tw(L,R)) Yw(L,R)s
Tw(L,R)X> Yw(L,R)Xx Satisfy the following equation in m(Tw(L,R)x), where X = L,R, L, R:

t t
( [Zw(z,R)x ] ) _ ( [Tw(L,R)] )Ux
[Yw(z,r)x] (Yu(z,p)] ’
where Ux is defined in Definition 8.1.
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Proof.

1. Thecase X =L

Since Ty (L R) is solid torus, m1(Ty(z,r)) is one generator free group. Thus, we
suppose that

T1(Tw(L,R)sv0) =< G | — >; [Zw(L,Rr) ] = MmG; [Ywi.r)] = G,
where v is the vertex vg of w(L, R) - diagram. We have

r 0. 1—1 -1

T (Twr,r) N Mp,v0) = <d, v |dy'd 97 >
= <<C¥’, ’)/l - >,

where <> means omitting commutative relations. By Proposition 4.3,
Wl(Mf,,UZ) = a,) '7” Q, ¥ | —d +o, v+ o —- 71 >,

where v, is vertex vz of L-ring, see Figure3. By gluing map ¢, the vertex vz of M;
is identified with vp of Tz r). According to the theorem of Seifert-van Kampen,
we get

T1(Tw(L,R)L) V2)
= <G, d,Y,a,7| —d+a, y+d -9, o =mG, ¥ =1G>
LG, oa,v| —-mG+a, y+mG-IG>
<G| =>,

and
[aL]=mG = [aL]; [fr]=-mG+1G=—[aL]+[7L].
Thereby, we have the following relations:

[zwi.rmx] = [aL]=mG=[aL]=[zur,prl;
[Ywemx] = [AL]=-mG+I1G = -[aL]+ 7] = [Twe.r) ]+ [Yui.r) )

Thus, we obtain the following relation in m1 (T, r)L):

(lzemel) = (foemly (33

t
_ ( [Zw(L,R)] )UL,
[yw(L,R)]
where Uy, is defined in Definition 3.1.
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2. Thecase X =R,L,R
Calculating m1(Ty(z,r)x; Vo) similar to the case 1, we have

t t
( (Tw(r,r)x] ) _ ( [Zw(z,R)] )U
- X
[ Yw(L,R)X ] [ Yw(L,R) ]
where X = R, L, R.

Recall that two loops m and ! are embedded in 9Ty. By Lemma5.3, there exists two
loops muy,(r,r) and ly(r, r) embedded in ATz, Rr) such that

[Muwz,r)] = [m] in m1(Ty(L,r) );
(lwiz,r)] = [1] in m1(Ty(L,R) )-
By Remark 2.10, there exists integer a, b, c, d such that
[MmuwE,r)] = a[Twe,r)] +b[Yu,R)] in m(0Tw(L,R));
[lwz,p)] = clzwr,r)] + 4 [Yuw(L,R)] in m(0Ty(r,R) )

Proposition 5.6 tells us the coefficient a,b,c,d and My(L,r) 80d ly(z gy are the meridian
and longitude of T,,(;, g).

First we show the following proposition. Recall the notation D;,;, D} ;, D and D* in
Lemma 3.2.

Proposition 5.5 For a finite sequence of a natural number A[n] := {ay, ag, ... ,an-1, @n },
we define a word on the letter { L,R} as follow:

L% Ro2 [93 ... [9n-2 Ron-1[% (7 : odd)
w(A[n]) := { L% RO [%3 ... R%~2 [8n-1 R (p : even) '

Then, we get the following conditions:
(a) The case n is odd

1. [m] = Dpi1,n+1 [Twapm) | = Doyntt [Yw@am)] @ 71 Twapm));
2. [1] = =Dhya nt2 [Twam) ] + Drta,nte [Yuamy] i m1(Tuapm)))-

(b) The case n is even

1. [m] = =Da ns1 [Twiam)) ] + Das1,n41 [Yoamp] 0 71(Tuapm));
2. [l] = D1 n42 [Twap) ] — Dhto,nte [Yw@am)]  in m1(Twiam))-

Proof.
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(a) The case n is odd

By Proposition 5.4, we get

()

t
— ( [!’i’]] )UO UpB Ug% UL® --- U2 U1 UL%.

U Ug®2 UL® -.. U2 Upt-1 Uy

N

By Lemma 3.2, we have

t
( [[?'f%]] )Uo UL Ug® UL® ... Upon-2 Ug-1 Uy

t
_ ( (1] )( Dpnt1 Dntinnr )
[m] D*pi1,n+2 D*nizne2
Thus, we obtain

{ [Zw(am) )
[Yw(am) ]

Dp,ny1 [1]+ Dhty nye [m]
Dpt1,n41 [U]+ Doyo nge [m]

o { [m] = Dny1,n+1 [Twiapm)] — Da,nt [Yw(apm) ]
[1] = —Dii2ns2 [Twapm)] + Doy nee [Yw(apm) ]

(b) The case n is even
By Proposition 5.4, we can prove similarly to the case (a). ]

Proposition 5.6 The meridian my, 4 and the longitude ly(an)) of solid torus Ty (ajn))
are represented by as follows:

(a) The case n is odd
1. [myapm) ] = Dntt,n+1 [Twap) ] — Drntt [Yuapy] 0 71(0 Tuwapm) )i
2. [luamp ] = —Dhiz,ni2 [Twam) ] + Dhta,nie [Ywamy] 0 11(9 Tw(ap) )-
(b) The case n is even
1. [my(ap))] = —Dnnt1 [Twap) | + Dntt,ntl [Yuwiam)] 0 710 Twap) )
2. [Luap))] = Dhi1,ne2 [Twiaml) | = Driz,ne2 [Ywiapm)y] 0 m1(0 Tugapn)) )-
Proof.
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(a) The case n is odd
By Proposition 5.5, [mam))] = [m] in 1(Tyapm)). By Proposition5.2, [m] = 0
in m1(Tw(apm))- Thus, [mapm)] =0 in T1(Tw(Am))- Similarly, [lapm))] = [I] # 0 in
71 (Tw(Ap))-
Thus, the rest of proof is to show the following equations:
i. Dpt1,n41 and —Dy, nyq are coprime.

ii. —D3 9 p4o and D74y ..o are coprime.

iii. Dnt,n41 D041 n42 = Dnne1 (—Dhyp nye ) = lor—1
These are shown in Lemma 3.3(g),(h) and the equation (5) in Lemma 3.2 respectively.

(b) The case n is even
Similar to the case (a).

6 Lens space obtained by gluing T, z) and Ty, R)

In this section, we define the gluing of two solid tori Ty(L,r) and Tz, p)- Then, we show
the following fact in Theorem6.1: for any pair of coprime natural number p, ¢ (p>q),
we can choose two words w(L, R) and w'(L, R) such that L(p,q) is homeomorphic to the
manifold obtained by gluing of two solid tori Tw(1,r) and Ty, Rr)-

First we see the gluing of two solid tori T'w(z,r) and Tz, r). For convenience, w(L, R)
and w'(L, R) are denoted by w and w'. By Proposition2.7 and Lemma 3.4, there exists a
homeomorphism ¢ : 8T, r) — 0Ty (z,r)- The manifold obtained from gluing T, and
Ty by o is denoted by Ty, Uy, Ty

Theorem 6.1 For any pair of coprime natural number p,q (p > q), we choose a sequence
of natural numbers { a1, az, ..., @n-1, an } such that the fractional ezpansion of q/p is
[a1, a2, ..., Gn_1, Gn, —1] and define a word v(q/p) as follows:

v(gfp) = L% R%2 L% ... [%n-2R%-1[% (p : odd)
UP) = \ LmRe2L% ... Rm-2L%-1 R% (n : even) °
Then, we get L(p,q) = T U, Ty(q/p)- In particular, S3~T Up T1r and S2 x 81 ==
Ty U, Ty.
Proof.

1. We show L(p,q) = TL, Uy Tyy(g/p)

We use the same notations D; ; and Dj; in Lemma3.2. For convenience, we
denote a word v(g/p) by v. By Proposition 5.6, we get the following relation about
the meridian my of the solid torus T7:

[me]=[zL]+ [y inm(dTL). (12)
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(a) The case of n is odd
By Proposition 5.6, we have the following relations about the meridian m, of
the solid torus T,:
[my] = Dps1,n+1 [Zo] = Dayntr [90]; in (0 Ty). (13)

By Proposition 5.6, we have the following relations about the longitude I, of
the solid torus T,,:

[lv] = _D:z+2,n+2 [:v,,] + D:z+1,n+2 [y ]; in m(0Ty). (14)
According to definition of ¢, we obtain
o(zL) = Tv; ©(yL) = v (15)
Let o# : m(0TL) — m(0T,) be a homomorphism induced by homeomor-
phism ¢. Using the equations (12) and (15), we have
[p(me)] = ¢*([ms])
= ¢*(lz]+[ye])
o*([zL]) +¢*([yz])
[o(ze)]+ [e(yL))
[zo] + [30]- (16)

By equations (13), (14) and (16), we get the following equation in 71(0 Ty):

[‘P(mL )] = (D:z+2,n+2 + D:1+l,n+2) [m,,] + (Dn+1.n+1 + Dn,n+1) [lv]-

We have the following equations:

Dpi1,n41 +Dnny1 = D(ay, a2, ..., 8n-1,8n—2,1)
= D(a'ls azy, ..., Qn-1, Qn, _1);
Dhionta + Dryini2e = D(0,a1,02 ... 801,80 — 2, 1)

D(Oa ay, ag, ..., Gn-1, Gn, -1 )'

Thus, we have

D:z+2,n+2 +D:z+l,n+2 — D(O) a1, @2y ... 4, Gn-1, Qn, —1).
Dy nt1 + Dny1,nn1 D(ay, a2, ..., @1, Gn, —1)
By Lemma 3.3(b) and the definition of {ai, a2, ... , @r-1, an }, We get
D(O) ai, G2y «.. , Gn-1, Qn, "'1) q
=[aj,ag, ..., 01-1, 8, —1]==.
D(al)a%“"an—lyaﬂm _1) [ b ’ P ' ] p

By Lemma 3.3(e), D(0, a1, .- , an, —1) <0 and D(ay, ..., an, —1) <0.
From Lemma3.3(f), —D(0, a1, ..., an, —1) and —D(ay, ... , @y, —1) are co-
prime. So, we have D(0, ai, ..., ap, —=1) = —q , D(a1, ..., an, =1) = —p.
Thus, we obtain ( D}z ni2 + Dht1,nt2s Dnynet + Datintr ) = (—¢,=P)-
Thereby, the manifold 7y, U, T, is homeomorphic to the lens space L(p, q).
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(b) The case n is even
By Proposition 5.5, we have the following equation in (8 Ty):

[p(mL)] = (D:r.+2,n+2 + D:;+l,n+2) [my] + (Dat1,n41 + Daynir) [l ]
Thereby, the manifold Ty, U, T, is homeomorphic to the lens space L(p, g).
2. We show 3 =~ Ty, U, Trr
By Proposition 5.6, we get
[e(m)] = [mrr]+ [lzL]

3. We show 2 x S1 > 1T}, Up T
By Proposition 5.6, we get

[p(mL)] =[mL]

7 Type of Tw(r,R)

For a pair of coprime natural number p,q(p > ¢), we will define a word w(g/p) on the
letters {L, R} and we call Tow(g/p) 9/P type solid torus. In section8, we will see that g/p
type solid torus corresponds to (p,q) type singular fiber.

First we show the following proposition. Recall that the loop Zy(L,r) is defined as
the loop v,z R)aw(L,R)‘l embedded in 8Ty r). We denote the homotopy class in

T1(8Tw(L,r)) of the 100p zy(z,R) by [2u(z,R)]-

Proposition 7.1 For any pair of coprime natural number 2,q(p > q), we choose a
sequence of natural numbers { a1, ag, ..., @n_1, an } such that the fractional ezpansion of
a/p is [a1, @y, ..., @n_1, an, 1] and define the word w(g/p) as follow:

._ L% Re2 @3 .., [8n—2 RGn-1 [Gn (n : Odd)
w(g/p) == L% Ro2 [63 ... Ron-2 [0n-1 Ron (n: even)

Then, we get the following relation in (0 To(g/p) ):
[2w(a/p) ] = Pllutarp) ] + 2 [Muig/m) )

where Ly g/p) and my,q/p) are defined in Proposition 5.6.

Proof. Recall the notation D, j,D} ;,D,D* in Lemma3.2. By Proposition2.9(c), we

i,
have the following relation in 71(8 Ty(g/p)):

[Zwie/)] = [Yu(am] - [Zwg/p) |-
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(a) The case n is odd

By equations (6) in Lemma 3.2, we have DX, — D*X = 1 and —DY, + D*Y) = —1.
For convenience, we denote w(g/p) by w in calculation. According to Proposition 5.6,
we get the following relation in 71 (9 T,):

[2w] = [9w]—[2zw]
= (DX, —D"X))[yw]+ (—-DY, + D*Y)) [2w]
= D(-Yu[zw]+ Xulyw]) + D" (Ya[zw] = Xx [30])
= D(-Diiont2[zw] + —Dhiinte(yw])
+D*(Dpy1n41[Zw] + —Dapnt1[yw])
= D|ly]+ D*[my].

(b) The case n is even
By Lemma 3.2 and Proposition 5.6, we get the following equation similar to the case

(a).
[2w] = D[lw]+D*[mu].

According to the Lemma 3.3(b) and the definition of {a1, ag, ... , @n—1, @n }, We get
z — D(O,a'lra%"',aﬂ-—l,a'n,l)
D D(alaa%""a’n—laanal)
= [al) a2, ..., Gn-1y Qn, 1]
= q/p.
We also have D (0, a1, a2, - .. , Gn—1, Gn, 1) and D (ay, ag, ... , @Gn-1, Gn, 1) are positive
and coprime by the Lemma3.3(c),(d). Thus we get D (0, a1, a2, ..., @n-1,0n, 1) = ¢
and D (ay, ag, ..., @Gn—1,8n, 1) =p. ]

Notation 7.2 For a word w(q/p) defined in Proposition 7.1, Tyq/p) s called q/p type
solid torus and denoted by T(q/p).

Now, we define b type solid torus for a non-zero integer b.
Definition 7.3 For an integer b(# 0), we define the word w(b) as follows:
LR*L (b>0); LR™"1L (b<0).

For the solid torus Ty ), twWo 100pS Ty(p) = Cu(b)Bw(p) a0d Yu(p) = Buw(s)Yw(s) 8T€ em-
bedded in & T, ). Recall that any loop embedded in 9Ty, ) is represented uniquely by
co[Zw(e) ] + €1 [Ywm)] (o, €1 € Z), see Remark 2.10.
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Definition 7.4 We define two loops my,p) and ;) embedded in 0T, y) represented by
the element in m1(0 Ty(p)): .

[muw@)] = (1 =0)[2Zuwe)]+b[vuwm);
[l = (0=2)[zwe) ]+ Q= 0) [vup)]-

Proposition 7.5 1. [myy)] is meridian of Ty, that is, [my@p)] = 0 in m1(Tye));

2. [lw(b)] is longitude of Ty (), that is, [lw(b)] # 0 in (L)) and myp) and bu(v)
intersects at one point.

Proof.

(a) The case b> 0
By Proposition 5.4, we get

t( lww(b)l) - t( [[%% )ULURb—lUE

[Ywv) ] o

- t( [”]] )Uo ULURS1U;

a0 b —b+1 1

B [m] -b+1 -b+2 1)’
where Up, UL, Ug, U}, are defined in Lemma 3.2. Thus, we have the following relation
in Wl(Tw(b) ).

{[xw(b)] = (=0 [!]+(=b+1)[m]
(Yw@)] = (=b+1)[1]+ (-b+2)[m]
(1 =) [Tw@)] + b[Ywp)]

o {Im]
{ [{] (0 =2) [Zu@p)] + (1= b) [yup)]

And we have [m] = 0 in 71 (Ty()) and [I] #0 in T1(Tow(p))- Thus, two loops m,p)
and l,,(;) embedded in 97T, are meridian and longitude respectively.

(b) The case b< 0
The proof is similar to the case (a). 1

i

Recall the loop zy(z,r) embedded in 87T, ) is defined as the loop Ywl(L, R)a‘lw(L, R)-
Proposition 7.6 For any integer b # 0, we get the following relation in w1 (0 Tow)):

[2we) ] = [Lwe)] + [Mawe) -
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Proof. By Proposition 2.9, we get the following relation in 71 (0 Ty (p)):

[2w@)] = [Yw@)] = [Zwe)]
(=b+1) [ly@) ] + (=0 +2) [my) ]
- ((_b) [lw(b) ] + (""b + 1) [mw(b) ] )
= [lw@) ]+ [mwe) )

Definition 7.7 For a word w(b) defined in Definition 7.3, Tyyp) is called b type solid torus
and denoted by T(b).

8 Seifert manifold

In this section, we define the identification maps f¢, and f. on 8B3 such that B¥/fg,
and B3/, are homeomorphic to (5'2 — (1142 Int (D?) )) x S! and (S! x S! — D?) x §!
respectively. And we show that any Seifert manifold whose base space is orientable can
be obtained by gluing T'(g:/p:), T(b), B®/ fg, and B3/f..

We use the notation H; (i € N) for the diagram shown in Figure23. Assume that H;
is embedded in 0B3. Let fy, be an identification map on B3 associated with the diagram
H;, that is, the edges which have same oriented label are identified and the identification
of vertices and face are induced by the identification of edges.

First we consider the manifold B3/ fy,, denoted by Mpy,.

Proposition 8.1 My, is homeomorphic to (82 — (LI, Int( Df))) x St.

Proof. This proof is similar to [10]. Without loss of generality, we assume the following
conditions:

1. B¥={(z,y,2) €R3; 22 + 2 + 22 < 1}
2. 8B3 N {z = 0} is the bold line drown shown in Figure24.

3. The projection of the edge X; embedded in 8B3 N {z > 0} to the surface 2 = 0
and of the edge X; embedded in 8 B3N {z < 0} to the surface z = 0 are congruent.
Similarly, the edges X2, X3,Y; and Z; are satisfies the same condition (7=1,2,3).

Suppose the flow generated by the vector field 8/8z on B3. A point a in region A shown
in Figure25 is mapped by the identification map fx; to a; in the region A;. And it is
moved by the flow 8/8z and arrives at az in Ag. After that, it is mapped to a3 in A3 by
fu, and it turns back by a flow to the same point a in A. Also a point in region OA turns
back to the same point in A by fg, and the flow 8/8z. Any point in My, turns back in
the disc AU BUC U DU E shown in Figure25. Thus, the base space of My; is H;/ fu;,
where H! is shown in Figure 26. Since H!/fy, is homeomorphic to §% — ( 3 Int(D?)),
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Figure 23: Diagram H;

the manifold My, is homeomorphic to (32 - (L%, Int( D?) )) x S1. 1

By the proof of Proposition 8.1, a fiber structure of M H; by the vector field 8/9z. The
loop {(z,4,2) [z =y=0, -1 <2< 1}/fy, (= S) is a fiber of Mpy,. Tt is isotopic to
oyt (k=4,i+1,i+2).

Now we define the diagram Gy, inductively by using H;.

Definition 8.2 The diagram G is defined as Hy. Suppose the diagram Gy is defined.
Then, Gy, is defined the following two steps.

1. Identify the circle ant1 Bnt1 Yo+t a;_}_l ,H,;'_Il_l 7,:_,1_1 of Gn—1 and the circle ap B 1 ;!
2l9nY of Hy, such that the directed edges Qn+1s Bnt1, Tnt+1 and an, Bn, 1o are

n Tn
identified respectively.
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-

Figure 24: 0 B3N {z = 0}

2. Delete the edge an+t1 Bnt1 Yn+1 of Gn-1 and apn fBnn of Hn.

Assume that Gy, is embedded in 8B3. Let fg, be an identification map on 8B3. induced
from the identifying the directed labeled edges of Gy,. We consider the manifold B3/fa..,
denoted by Mg, .

Proposition 8.3 The manifold Mg, is homeomorphic to (82 — (12 Int (D?) )) x St

Proof. The proof is similar to Proposition8.1. Suppose the flow §/0z. Contracting a
flow to a point, we get the disc G, which is homeomorphic to §2 — (L[4 Int (D?)).

Thus, Mg, is homeomorphic to (32 - (H:‘__:"f Int(D?) )) x S1. 1

By the proof of Proposition 8.1, a fiber structure of Mg, is 3/0z. Thus, a loop viq; 1
is a fiber of Mg,, where1 <i<n+2.

Now, we consider the manifold (S* x 8! — D?) x §'. The diagram shown in Figure 27
is called *i-diagram and denoted by *i. Assume that *i-diagram is embedded in oB3.
Let f,; be an identification map on 8B3 associated with the - diagram. We consider the
manifold B3/f.;, denoted by M,;.

Proposition 8.4 M,; is homeomorphic to (S! x S* — D?) x S*.
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Figure 25: Region A,B,C,D and E

Proof. The proof is similar to Proposition8.1. Embeds #i- diagram in the boundary
of the unit ball and suppose the flow 8/9z. Contracting a flow to a point, we get the
surface *; which is homeomorphic to S! x S! — D? . Thus, M,; is homeomorphic to
(8* x 8- D?) x St 1

Now, we consider a Seifert fibered space S (Fg, b; (@1,1), .- , (@n+1,Bn+1) ), where
Fy is orientable closed surface with g genus. The boundary of the manifold M,,, is
i7" Di/ fGo4q» Where D; is a disc shown in Figure21. Thus, 8 Mg,,, = [[¥+'T;,
where T; := D;/fg,,,, = §'xS". And ;-curve is embedded in T} such that T; \ ( o;UB;Uy; )
is homeomorphic to an open disc. So, there exists a homeomorphism ¢; : 0T (qi/pi) = T;
(1<i<n+1)and ppio : T (D) = Tz and @; : My = T} (n+3<i<n+g+2)
by Lemma 3.4.
We use the notation Mg,,,, UT(g;/p;) UT(b) U M,,; for the manifold obtained by gluing

Mg,,, and [ T(gi/p;) and T(b) and [I9}2 M.; by oi.

i=1

Theorem 8.5 The manifold Mg, +o U T(qi/p:) U T(b) U M,; is homeomorphic to the
Seifert manifold S ( Fy, b; (p1,71),... ,(Pnt1,Tn+1) ), where r; is decided such that gi/pi =
(@1, ag, ... ,ak-1, ax, 1] and '

o { —Dy,k+1(01, ay ..., ag—1, 0k, 1) (k : odd)
: Dg4r,k41(a1, @2, ..., ak-1,ax1) (k : even) ’

where D; j(ay, ag, ..., an-1, ay) in Definition 3.1
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Figure 26: Base space H;’

Proof.

1. Thecase1<i<n+1

For convenience, we denote w(g;/p;) by w.

(a) The case k is odd of g;/p;.
By Proposition 5.6, the meridian of T'(g;/p;) satisfies the following conditions
in m (8T (gi/pi))-

[mw] = Dn+1,n+1 [xw] "Dn,n+1 [yw];
[lw] = _D:1+2,n+2 [xw]+D:1+1,n+2 [Yw]-

By definition of ¢;, we get ¢ (v ;') = ya~!. Since vi;~! is a fiber, we
regard ya~! as a fiber of T(g;/p;). Let cp,# : m(0T(gi/pi)) — m(Ti) be a
homomorphism induced by homeomorphism ;. By Proposition 7.1, we get the
following equation in 7y (0T(q:/p;))-

[ (neg™)] = o (Imart])
= [va7!]
= [zw]
= pi[lw]+g[muw]

This means that the core of T(gi/p;) is (pi,qi) type singular fiber. And we
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(b) The case k is even

The proof is similar to the case (a). By Proposition 5.6, we have the following
conditions in m(g;/p; ).

(@i (m)]

[t (ei™!)] =

Bi
Figure 27: Diagram xi

have the following equation in m(T;):

o ([mw])

©F (Disa, k41 [2w] ~ Dk [yw])

Dy, ki1 F ([2w]) = Dikrr oF ([9])
Dis1,k41 [0 Bi] = D,y [Biwi]

Dit1,k+1 [@i Bi] = D e [Bici o™t ]
Dit1,k+1 [@iBi] = Digsa ([Bici] + [vii™!])
(Dr+1,k+1 = D1 ) [ Bi] — Dig g [ 07!

Two loops o; B; and v; o] ! are embedded in T} such that a; B; = T,NH] and o; 3;
intersects ; o5 ! at a point. By Lemma 3.3(i), we get D k+1,k+1 —Dg k41 = i
So the fiber type is (p;, —Dgp+1 )-

pi[lw] + @i [mu)-

This means that the core of T'(g;/p;) is (pi,¢;) type singular fiber. Also, we get
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the following conditions in m(T;).

[¢i(mw)] = @ (= Drks1 [2w] + Disr,ks1 [pw])
= —Di k19! ([Zw]) + Dis1 ka1 SO,#([yw])
= (Dg+1,k+1 — Dikt1 ) [ Bi] + Diyr k1 [ 067!
= pi{aiBi]+ Dir,ks1 [vii ™)
Thus, the fiber type is (pi, D g41,k+1 )-

2. Thecasei=n+2
The proof is similar to the case 1. We get the following relation in m (8 T'(b)).

(muwe)] = (1-0)[zwe) ]+ by |;
[lwpy] = 0=2)[zwe)]+ Q=) [vuwe) ]

Since ¢} 1o( Mn+2nt2) = va~), the loop ya~! is a fiber of T'(b). By Proposi-
tion 7.5, we get the following equation in 1 (3T(b)).

[eils (mrzaniz )] = ¢ ([Taszanszl])
[va™!)

= [2y(p)]

= [lw@)] + [muwp) ]

By Proposition 7.5, we get the following equation in m1(Tp42 ):

[0ns2 (Mup))] = @hya ([Mmup)])

= ¢ (1= b)[Tup) ]+ bvue)])

(1 =) pf 2([Tuipy]) + 92 [ ])

(1 —b) [an+2 Briz] + b Brt2 2]

(1—b) [an+2Bnt2] + b[Bri2 on2 Ont2” " 2]

(1 = b) [en+2 Bnt2] + b ([ Btz ansz] + [oms2 ™ Yns2])
= [on+2 ﬂn+2] +b ['7n+2 an+2_1 .

This means that the core of T'(b) is the fiber corresponding to the obstruction class
b.

3. Thecasen+3<i<n+g+2

By the definition of ¢; and Proposition 8.4, the base space of M,; is S* x S! — D2.
Thus, the base space of Mg, ,, UT(gi/p;) UT(b) U M,; has g genus.
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9 Singular triangulation of Seifert manifold

Definition 9.1 Fori=1,2,... ,n+1, let (p;, ¢;) be pairs of coprime natural numbers
such that p; > q; and b an integer such that b # 0 and g be a natural number. Then, the
diagmm G’n+g ( *1, *2,...,%g, b) QI/pla Q2/p2’ see ,Qn+1/pn+1 ) is deﬁned the followmg siz
steps.

1. Identify the circle a; Bivi o7 ' B71 47! of the Gnig and the circle afya™! 147!
of w(pi/g:) - diagram such that the directed edges a;, B3;, v; and a, B, v are identified

respectively, where i =1,2,... ,n+1
2. Delete the edge ai, B, Yi of Gnig and o, B, v of an w(pi/q;) - diagram, where i =
L,2,...,n+1

3. Identify the circle ap+2 Bnt2 Yn+2 a;_}_2 ﬁ;_'l_z 7;_,1_2 of the Gpg and the circlea fya™!
B~y of w(b) - diagram 'such that the directed edges any2, Bat2, Yny2 and a, B, v
are identified respectively.

4. Delete the edge an+y2, Bni2, Ynt2i of Gnyg and e, B, v of an w(b) - diagram.

5. Identify the circle o; B;vi o 1 B 1 7 1 of the Gn+g and the circle o; B v 1 B; 1 v 1
of i -diagram such that the directed edges ai, B;, vi and o, B;, i are identified
respectively, wherei =n+2,n+3,... ,n+g+2.

6. Delete the edge i, Bi, i of Gnyg and i, B, v of an i - diagram,
where two words w(p;/q;) and w(b) are defined in Proposition 7.1 and Definition 7.83.

Remark 9.2 The diagram Grnig( *1, *3,... ,%g, b, g1/P1, q2/P2,- - - 1 Gny1/Pns1) is DS-
diagram, where DS-diagram is defined in [{]. The DS-diagram of lens space is shown in
[11] and [12].

Assume that G := Gpig( *1, *o,... y%gy by, @1/D1, @2/P2, ... ,@n+1/Pn+1) is embedded in
O B3. Let fg be an identification map induced from the identifying the directed labeled
edges of G. We consider B3/fg, which is denoted by M (Gn+tg (e, b, q1/p1, @2/P2, - -

@n+1/Pn+1)) Since G is DS-diagram, (8B )/ fg is a special spine for the manifold B3/ fg,
see [4]. Thus, the dual complex of (8B3)/ fg is the singular triangulation of the manifold

M (Gn+g(g*: b,Q1/p1, Q2/p27°" )Qn+1/pn+1))'

Proposition 9.3 The manifold M ( Gnig (g, b, q1/P1, 92/P2, - -+ » Gnt1/Pnt1 )) is home-
omorphic to Seifert manifold S (Fg, b; (p1,71),--- , (Pnt1,Tn+1) ), where r; is defined in
Theorem 8.5

Proof. The proof is similar to Lemma 5.3. By definition of gluing map ¢;, the boundary
of T(qi/p:) (or T(b), M,;) and torus T; which are the boundary component of Mg, o
are identified such that p;(as) = ai, 9i(Bi) = B, wi(%) = v. Thus, the manifold
M (Gryg (e, b, a1/P1, @2/D2,- -+ y@ns1/Prs1) ) is homeomorphic to the manifold Mg, , U
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T(g:/p:) U T(b) U M,;. By the Theorem 8.5, the manifold Mg, ,, UT(g:/p;) UT(b) U M,;
is homeomorphic to Seifert manifold S ( Fy, b; (p1,71),-.+ » (Pat1,Tn41) )- 1

At last, we get the following theorem by Theorem 8.5, Remark 9.2 and Proposition 9.3.

Theorem 9.4 Let G := Gy (ger b, 1/P1, ©2/P2s- -+ sGn+1/Prt1) be @ DS-diagram of
Seifert manszId OfM = Bs/fG = S(Fgab; (al’ﬁ1)$ (a2aﬁ2),' o 1(an+1)ﬂn+l))- men}
a Singular triangulation of Seifert manifold M is dual complez of (0B3)/fc.

Example
1. Quaternionic space = M (G1(1/2, 1/2, 1/2))

2. Brieskorn manifold
2(2) 3, 5) =S (S2a -1; (21 1): (31 1)1 (51 1)) = M(G!Z( -1, 1/2, 1/3’ 1/5))

3. S(Fy, —2;(5,3),(3,1),(2,1)) = M (G4(2., -2, 2/5, 1/3, 1/2))
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