Systematic singular triangulations of all Seifert manifolds

山下正勝 坪井恵子 谷口太聖

本論文は、投稿予定の論文をベースにしていますので、 1. Introduction 以外は英語となっていますが、ご容赦願います。

1 Introduction

任意の閉3次元多様体には、頂点が1つである singular triangulations が存在する([1] を参照). これを one-vertex triangulation と呼ぶことにする. 本報告では、全ての Seifert manifold M に対して、その表示 $S(F_g,b;(\alpha_1,\beta_1),(\alpha_2,\beta_2),\cdots,(\alpha_{n+1},\beta_{n+1}))$ から、M の one-vertex triangulation を構成する方法を述べる.

この構成方法を用いると、Seifert manifold M の one-vertex triangulation は、 $\{L,R,\bar{L},\bar{R}\}$ の有限列(word)で表される(Section 8 を参照). 特に、レンズ空間 L(p,q) は、q/p の連分数展開に関係した $\{L,R\}$ の word で表される(Section 6 を参照).

この構成方法は次のような段階に分かれている。始めに、 $\{L,R,\bar{L},\bar{R}\}$ 上の word に対して、辺に向きとラベルが与えられた 3-regular graph G を定義する(Section 2, 8 を参照). 次に、 B^3 の境界に埋め込まれた G が、 ∂B^3 の同一視写像 f_G を導くことを示す。最後に、任意の Seifert manifold M に対して、 $\{L,R,\bar{L},\bar{R}\}$ 上の word が存在して、この word によって定義される graph G が導く同一視写像 f_G が、 B^3/f_G が M と同相であり、 $(\partial B^3)/f_G$ が M の special spine となることを示す。special spine O dual cell complex は one-vertex triangulation であるから、M の one-vertex triangulation が得られたことになる(Section 9 を参照).

歴史的には、3-regular graph G から導かれる ∂B^3 上の同一視写像を用いて、3 次元多様体 M ($\cong B^3/f_G$) を表示することは新しいことではない。例えば、quaternionic space の 3-regular graph による表示は文献 [2] の図 19 にある。これらの表示方法に対して、本報告で示す表示方法は次の 2 点において、新しく、有効である。

1つは、Mの fiber 構造が明らかであることである. 任意の M に対して、 $M\cong B^3/f_G$ となる 3-regular graph G を構成したのだが、この G には、E-cycle と呼ばれる cycle e が存在する. E-cycle の定義は [3]-[6] にある. この E-cycle e の性質の 1 つとして、 \mathbb{R}^3 内の単位球 B^3 の境界に、 $e=\partial B^3\cap\{z=0\}$ となるように G を埋め込んだとき、ベクトル場 $\partial/\partial z$ で生成される flow によって M の fiber structure が 1 つ定まる. 例えば、Figure 1 は quaternionic space の表示であり、E-cycle は $X_1X_2Y_1Y_2Z_1Z_2$ である.

もう1つは、M の Dehn surgery を表示しやすいことである. 任意の Seifert manifold M に対して、M の singular fiber に沿った Dehn surgery によって得られる manifold M' は、 $M \cong B^3/f_G$ となるグラフ G の一部を取り替えたグラフ G' によって、 $M' \cong B^3/f_{G'}$ となる. 例を挙げると、Figure 2 のグラフによって表されている manifold は、Figure 1 のグラフによって表されている manifold を、(2,1) type singular fiber に沿った -1 Dehn surgery した manifold である.

また、本報告での表示方法を用いると、fibered solid、 $(S^2-(D^2\cup D^2\cup D^2))\times S^1$ 、 $(S^1\times S^1-D^2)\times S^1$ に対して、ベクトル値 Turaev-Viro invariant を定義することができ、Seifert manifold の Turaev-Viro invariant が、これらのベクトルの内積によって計算される([7] を

Figure 1: Graphical representation of quaternionic space

Figure 2: Dehn surgery along a singular fiber

参照). また、3次元多様体に対する新たな complexity であるブロック数が定義できる([8] を参照).

2 Definition of solid torus $T_{w(L,R)}$

In this section, we define a word diagram for a word on the letters $\{L, R, \bar{L}, \bar{R}\}$ denoted by w(L, R). After we define a w(L, R)-solid torus.

The the directed labeled 3-regular graphs shown in Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7 are called L-ring, \bar{L} -ring, R-ring, \bar{R} -ring and ϕ -diagram respectively. Let W be a word $X_1X_2\cdots X_n$, where $X_i\in\{L,R,\bar{L},\bar{R}\}$. We define a W-diagram inductively. In the case n=0, W-diagram is defined as ϕ -diagram. Then we define a W-diagram

In the case n=0, W-diagram is defined as ϕ -diagram. Then we define a W-diagram in the case n=1.

Definition 2.1 For a word W = X, where $X \in \{L, R, \bar{L}, \bar{R}\}$, the W-diagram is defined by the following two steps:

- 1. Identify the circle $\alpha \beta \gamma \alpha^{-1} \beta^{-1} \gamma^{-1}$ of the ϕ diagram and the circle $\alpha' \beta' \gamma' {\alpha'}^{-1} \beta'^{-1} \gamma'^{-1}$ of the X ring such that the directed edges α , β , γ and α' , β' , γ' are identified respectively.
- 2. Delete the edge α , β , γ of the ϕ -diagram and α' , β' , γ' of an X-ring.

An example in the case X = L is shown in Figure 8. Then, we define a W-diagram in the case n > 1.

Definition 2.2 Let W be a word $X_1X_2\cdots X_n$, where $X_i\in\{L,R,\bar{L},\bar{R}\}\ (1\leq i\leq n)$. Suppose the W-diagram is defined. Then, for a word $X_{n+1}\in\{L,R,\bar{L},\bar{R}\}$, the WX_{n+1} -diagram is defined by the following two steps:

Figure 3: L-ring

- Figure 4: \bar{L} -ring
- 1. Identify the circle $\alpha \beta \gamma \alpha^{-1} \beta^{-1} \gamma^{-1}$ of the W-diagram and the circle $\alpha' \beta' \gamma' {\alpha'}^{-1} \beta'^{-1} \gamma'^{-1}$ of the X_{n+1} ring such that the directed edges α , β , γ and α' , β' , γ' are identified respectively.
- 2. Delete the edge α , β , γ of the W diagram and α' , β' , γ' of an X_{n+1} ring.

We call such a diagram a word diagram and denote them by w(L,R)-diagram.

We assume that w(L,R)-diagram is embedded in $S^2 (\cong \partial B^3)$. Then the circle $\alpha \beta \gamma \alpha^{-1} \beta^{-1}$ γ^{-1} of w(L,R)-diagram separate S^2 to two discs.

Notation 2.3 The disc which contains the edges of w(L,R) - diagram is denoted by $D_{w(L,R)}$. Another disc is denoted by $E_{w(L,R)}$.

For example, D_L is $A \cup A' \cup B \cup B' \cup C \cup C' \cup D \cup D'$ in Figure 9.

Let $f_{w(L,R)}$ be an identification map on $S^2 (\cong \partial B^3)$ induced from the identifying the directed labeled edges of w(L,R)-diagram. We give an example f_L : the face \mathcal{A} and \mathcal{A}' are identified by f_L because both faces is bounded by the circle PQ of the L-diagram, see Figure 9.

We consider the manifold $B^3/f_{w(L,R)}$. In Proposition 2.6, we will show that $B^3/f_{w(L,R)}$ is solid torus for any word w(L,R). Before discussion, we prepare some lemmas.

Lemma 2.4 The manifold B^3/f_{ϕ} collapses to S^1 , where f_{ϕ} is the identification map in the case $w(L,R) = \phi$.

Proof. By the definition of f_{ϕ} , the boundary of B^3/f_{ϕ} is E_{ϕ}/f_{ϕ} . Thus, the manifold B^3/f_{ϕ} collapses to the cell complex D_{ϕ}/f_{ϕ} from its boundary, where D_{ϕ} is shown Figure 10. And

the cell complex D_{ϕ}/f_{ϕ} collapses to a cell complex D'_{ϕ}/f_{ϕ} , where D'_{ϕ} is shown Figure 11. Similarly, the cell complex D'_{ϕ}/f_{ϕ} collapses to a loop B/f_{ϕ} , where B is the edge shown in Figure 11. Thus, B^3/f_{ϕ} collapses to S^1 .

Lemma 2.5 If the manifold $B^3/f_{w(L,R)}$ collapses to S^1 , then the manifold $B^3/f_{w(L,R)X}$ collapses to S^1 , where $X \in \{L, R, \overline{L}, \overline{R}\}$.

Proof.

1. The case X = L

The manifold $B^3/f_{w(L,R)L}$ is collapsed to a cell complex $D_{w(L,R)L}/f_{w(L,R)L}$ from its boundary, where $D_{w(L,R)L}$ is shown Figure 12. It collapses to the cell complex $D'_{w(L,R)L}/f_{w(L,R)L}$ from its boundary, where $D'_{w(L,R)L}$ is shown Figure 13. Similarly, the cell complex $D'_{w(L,R)L}/f_{w(L,R)L}$ collapses to the cell complex $D''_{w(L,R)L}/f_{w(L,R)L}$, where $D''_{w(L,R)L}$ is shown Figure 14. At last, the cell complex $D''_{w(L,R)L}/f_{w(L,R)L}$ collapses to a cell complex $D'''_{w(L,R)L}/f_{w(L,R)L}$, where $D'''_{w(L,R)L}$ is shown Figure 15.

By definition of $f_{w(L,R)}$, $D_{w(L,R)L}'''/f_{w(L,R)L}$ is $D_{w(L,R)}'''/f_{w(L,R)}$. By assumption of induction, $D_{w(L,R)}''/f_{w(L,R)}$ collapses to S^1 . Thus, $M_{w(L,R)L}$ collapses to S^1 .

2. The case $X \in \{R, \overline{L}, \overline{R}\}$

By collapsing $B^3_{w(L,R)X}/f_{w(L,R)X}$ from its boundary similar to the case 1, the proof completes.

Proposition 2.6 For any word w(L,R), the manifold $B^3/f_{w(L,R)}$ is homeomorphic to a solid torus.

Figure 7: ϕ -diagram

Proof. By Lemma 2.4 and Lemma 2.5, $B^3/f_{w(L,R)}$ collapses to S^1 . Thus, $B^3/f_{w(L,R)}$ is homeomorphic to a solid torus or a solid Klein bottle. By the definition of ϕ -diagram and L, R, \bar{L}, \bar{R} -ring, the manifold $B^3/f_{w(L,R)}$ is orientated. Thus, $B^3/f_{w(L,R)}$ is solid torus.

The solid torus $B^3/f_{w(L,R)}$ is called a w(L,R) solid torus and denoted by $T_{w(L,R)}$.

Proposition 2.7 For any solid tours $T_{w(L,R)}$, the θ -curve shown in Figure 16 is embedded in $\partial T_{w(L,R)}$ such that $\partial T_{w(L,R)} \setminus (\alpha \cup \beta \cup \gamma)$ is homeomorphic to an open 2-disc.

Proof. Recall $E_{w(L,R)}$, see Notation 2.3. By definition of $T_{w(L,R)}$, the boundary of $T_{w(L,R)}$ is $E_{w(L,R)} / f_{w(L,R)}$. Thus, θ -curve is embedded in $\partial T_{w(L,R)}$ such that $\partial T_{w(L,R)} \setminus (\alpha \cup \beta \cup \gamma)$ is homeomorphic to an open 2-disc.

Notation 2.8 The edges α, β, γ of the θ -curve embedded in $\partial T_{w(L,R)}$ are denoted by $\alpha_{w(L,R)}, \beta_{w(L,R)}, \gamma_{w(L,R)}$ respectively. Then, $\alpha_{w(L,R)}\beta_{w(L,R)}, \beta_{w(L,R)}\gamma_{w(L,R)}, \gamma_{w(L,R)}\alpha_{w(L,R)}^{-1}$ are loops embedded in $\partial T_{w(L,R)}$. We denote them by $x_{w(L,R)}, y_{w(L,R)}, z_{w(L,R)}$ respectively. And their homotopy class in $\pi_1(T_{w(L,R)})$ or $\pi_1(\partial T_{w(L,R)})$ are denoted by $[x_{w(L,R)}], [y_{w(L,R)}], [z_{w(L,R)}]$ respectively.

Proposition 2.9 There exists two loops $x'_{w(L,R)}$ and $y'_{w(L,R)}$ embedded in $\partial T_{w(L,R)}$ satisfying the following conditions:

- (a) Two loops $x'_{w(L,R)}$ and $y'_{w(L,R)}$ intersect at one point in $\partial T_{w(L,R)}$;
- (b) Two loops $x'_{w(L,R)}$ and $y'_{w(L,R)}$ are homotopic to the loops $x_{w(L,R)}$ and $y_{w(L,R)}$ in $\partial T_{w(L,R)}$ respectively.

Figure 8: L-diagram

Figure 9: D_L

The homotopy class of three loops $x_{w(L,R)}$, $y_{w(L,R)}$, $z_{w(L,R)}$ in $\pi_1(\partial T_{w(L,R)})$ are satisfies the following condition:

(c)
$$[z_{w(L,R)}] = [y_{w(L,R)}][x_{w(L,R)}]^{-1}$$
.

Proof.

- (a)(b) By Proposition 2.7, the neighborhood of the edge $\beta_{w(L,R)}$ in $\partial T_{w(L,R)}$ are (i) or (ii) shown in Figure 17. In the case (ii), there exists a face bounded by $\alpha\beta\alpha$. This is contradiction because the boundary of $E_{w(L,R)}$ is $\alpha\beta\gamma\alpha^{-1}\beta^{-1}\gamma^{-1}$. Thus, the neighborhood of $\beta_{w(L,R)}$ is (i). Thereby, in $\partial T_{w(L,R)}$, two loops $\alpha_{w(L,R)}\beta_{w(L,R)}$ (=: $x_{w(L,R)}$) and $\beta_{w(L,R)}\gamma_{w(L,R)}$ (=: $y_{w(L,R)}$) are homotopic to the loops $x'_{w(L,R)}$ and $y'_{w(L,R)}$ respectively shown in (*).
 - (c) We get the following relation in $\pi_1(\partial T_{w(L,R)})$:x

$$[z_{w(L,R)}] = [\gamma_{w(L,R)} \alpha^{-1}_{w(L,R)}]$$

$$= [\gamma_{w(L,R)} \beta_{w(L,R)} \beta^{-1}_{w(L,R)} \alpha^{-1}_{w(L,R)}]$$

$$= [\gamma_{w(L,R)} \beta_{w(L,R)} (\alpha_{w(L,R)} \beta_{w(L,R)})^{-1}].$$

By (a) and (b), two loops $\alpha_{w(L,R)} \beta_{w(L,R)}$ and $\gamma_{w(L,R)} \beta_{w(L,R)}$ are homotopic to the two loops which intersects at one point. Thus, we have,

$$[z_{w(L,R)}] = [\gamma_{w(L,R)} \beta_{w(L,R)}] [\alpha_{w(L,R)} \beta_{w(L,R)}]^{-1}.$$

Remark 2.10 By Proposition 2.9 (a),(b), any loop embedded in $\partial T_{w(L,R)}$ is represented by the element $a[x_{w(L,R)}]+b[y_{w(L,R)}]$ in $\pi_1(\partial T_{w(L,R)})$ uniquely for some $a,b\in\mathbb{Z}$ because the fundamental group of $\partial T_{w(L,R)}$ is commutative.

Figure 10: D_{ϕ}

Figure 11: D'_{ϕ}

Figure 12: $D_{w(L,R)L}$

Figure 13: $D'_{w(L,R)L}$

Now we consider the manifold obtained from an X-ring, where $X=L,R,\bar{L},\bar{R}$. Assume that an X-ring is embedded in S^2 ($\cong \partial B^3$).

Notation 2.11 In S^2 in which an X -ring is embedded, the disc E', the annulus A and the disc $E:=S^2\setminus (E'\cup A)$) shown in Figure 18 are denoted by $E'_{\hat{X}}$, $A_{\hat{X}}$ and $E_{\hat{X}}$ respectively.

Let $f_{\hat{X}}$ be an identification map on S^2 ($\cong \partial B^3$) induced from the identifying the directed labeled edges of X-ring.

Proposition 2.12 Both $E'_{\hat{X}}/f_{\hat{X}}$ and $E_{\hat{X}}/f_{\hat{X}}$ are homeomorphic to $S^1 \times S^1$. And θ' -curve shown in Figure 19 and θ -curve shown in Figure 16 are embedded in $E'_{\hat{X}}/f_{\hat{X}}$ and $E_{\hat{X}}/f_{\hat{X}}$ respectively such that both $(E'_{\hat{X}}/f_{\hat{X}})\setminus(\alpha'\cup\beta'\cup\gamma')$ and $(E_{\hat{X}}/f_{\hat{X}})\setminus(\alpha\cup\beta\cup\gamma)$ are homeomorphic to an open 2-disc.

Proof. The proof is similar to Proposition 2.7.

Figure 14: $D_w^{(L,R)L}$

Figure 15: $D_w^{(L,R)L}$

Figure 16: θ -curve

 $E_{\hat{X}}/J_{\hat{X}}$ by $\alpha_{\hat{X}}$, $\beta_{\hat{X}}$, $\gamma_{\hat{X}}$, respectively. Also, we denote the arcs α' , β' , γ' of θ shown in Figure 19 embedded in $E'_{\hat{X}}/J_{\hat{X}}$ by $\alpha'_{\hat{X}}$, $\beta'_{\hat{X}}$, $\gamma'_{\hat{X}}$ respectively. Notation 2.13 We denote the arcs lpha, eta, eta of heta-curve shown in Figure 16 embedded in

In this section, we prepare three lemmas.

remmas

Definition 3.1 We define as follows:

$$U_{0} := \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} : \mathcal{U}_{1} : \mathcal{U}_{2} : \mathcal{U}_{3} : \mathcal{U}_{4} : \mathcal{U}_{4} : \mathcal{U}_{5} : \mathcal{$$

$$U_L := \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} : U_R := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} : U_R := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} :$$

where
$$U_{\bar{L}}=U_L^{-1}$$
 and $U_{\bar{R}}=U_L^{-1}$.

Figure 17: Neighborhood of the edge $\beta_{w(L,R)}$ embedded in $\partial T_{w(L,R)}$

Figure 19: θ'

Figure 18: E', A, E

For integers $k_1, k_2, k_3, \ldots, k_{n-2}, k_{n-1}, k_n$,

where the empty element is 0;

$$D(k_1, k_2, k_3, \ldots, k_{n-2}, k_{n-1}, k_n)$$

:= the determinant of the matrix $d(k_1, k_2, k_3, \ldots, k_{n-2}, k_{n-1}, k_n)$;

$$D_{i,j}(k_1, k_2, k_3, \ldots, k_{n-2}, k_{n-1}, k_n)$$

:= the determinant of the matrix derived i-row and j-colimn of $d(k_1, k_2, \ldots, k_{n-1}, k_n)$.

Lemma 3.2 Let $A[n] := \{a_1, a_2, \ldots, a_{n-1}, a_n\}$ be a finite sequence of a natural number

and the matrix U(A[n]) is defined as follows:

$$\begin{array}{lll} U(A[n]) &:=& \left\{ \begin{array}{l} U_0\,U_L^{a_1}\,U_R^{a_2}\,U_L^{a_3}\,\cdots\,U_L^{a_{n-2}}U_R^{a_{n-1}}\,U_L^{a_n} & (n:odd) \\ U_0\,U_L^{a_1}\,U_R^{a_2}\,U_L^{a_3}\,\cdots\,U_R^{a_{n-2}}U_L^{a_{n-1}}\,U_R^{a_n} & (n:even) \end{array} \right. \\ &=& \left(\begin{array}{l} X_\lambda & Y_\lambda \\ X_\mu & Y_\mu \end{array} \right). \end{array}$$

Then, U(A[n]) satisfies the following conditions:

(a) The case n is even

$$X_{\lambda} = -D_{n+1,n+1} (a_1, \dots, a_n, 1); \quad X_{\mu} = -D_{n+2,n+2} (0, a_1, \dots, a_n, 1); Y_{\lambda} = -D_{n,n+1} (a_1, \dots, a_n, 1); \quad Y_{\mu} = -D_{n+1,n+2} (0, a_1, \dots, a_n, 1);$$
(1)

$$X_{\lambda}Y_{\mu} - X_{\mu}Y_{\lambda} = -1; \tag{2}$$

$$-D(a_1, \ldots, a_n, 1)X_{\mu} + D(0, a_1, \ldots, a_n, 1)X_{\lambda} = -1; -D(a_1, \ldots, a_n, 1)Y_{\mu} + D(0, a_1, \ldots, a_n, 1)Y_{\lambda} = -1.$$
(3)

(b) The case n is odd

$$X_{\lambda} = D_{n,n+1} (a_1, \dots, a_n, 1); \quad X_{\mu} = D_{n+1,n+2} (0, a_1, \dots, a_n, 1); Y_{\lambda} = D_{n+1,n+1} (a_1, \dots, a_n, 1); \quad Y_{\mu} = D_{n+2,n+2} (0, a_1, \dots, a_n, 1);$$

$$(4)$$

$$X_{\lambda}Y_{\mu} - X_{\mu}Y_{\lambda} = -1; \tag{5}$$

$$-D(a_1, \ldots, a_n, 1)X_{\mu} + D(0, a_1, \ldots, a_n, 1)X_{\lambda} = -1; -D(a_1, \ldots, a_n, 1)Y_{\mu} + D(0, a_1, \ldots, a_n, 1)Y_{\lambda} = -1.$$
(6)

Proof. We prove by mathematical induction on n. For convenience, we use the following notations:

$$D' := D(a_1, a_2, \dots, a_{n-2}, a_{n-1}, 1); \qquad D := D(a_1, a_2, \dots, a_{n-1}, a_n, 1);$$

$$D^{*'} := D(0, a_1, a_2, \dots, a_{n-2}, a_{n-1}, 1); \qquad D^* := D(0, a_1, a_2, \dots, a_{n-1}, a_n, 1);$$

$$D'_{i,j} := D_{i,j}(a_1, a_2, \dots, a_{n-2}, a_{n-1}, 1); \qquad D_{i,j} := D_{i,j}(a_1, a_2, \dots, a_{n-1}, a_n, 1);$$

$$D^{*'}_{i,j} := D_{i,j}(0, a_1, a_2, \dots, a_{n-1}, 1); \qquad D^*_{i,j} := D_{i,j}(0, a_1, a_2, \dots, a_n, 1).$$

1. The case $n \geq 2$

Suppose the case n-1 is satisfied. Then, we will show the case n.

(a) The case n is even We assume that

$$\begin{array}{rcl} U(A[n-1]) & = & \left(\begin{array}{ccc} D'_{n-1,n} & D'_{n,n} \\ D^{*'}_{n,n+1} & D^{*'}_{n+1,n+1} \end{array} \right) \\ & = & \left(\begin{array}{ccc} X'_{\lambda} & Y'_{\lambda} \\ X'_{\mu} & Y'_{\mu} \end{array} \right); \\ X'_{\lambda}Y'_{\mu} - X'_{\mu}Y'_{\lambda} & = & -1; \\ -D'X_{\mu} + D^{*'}X_{\lambda} & = & -1; \\ -D'Y_{\mu} + D^{*'}Y_{\lambda} & = & -1. \end{array}$$

Then, we will show

$$U(A[n]) = \begin{pmatrix} -D_{n+1,n+1} & -D_{n,n+1} \\ -D^*_{n+2,n+2} & -D^*_{n+1,n+2} \end{pmatrix}$$

$$= \begin{pmatrix} X_{\lambda} & Y_{\lambda} \\ X_{\mu} & Y_{\mu} \end{pmatrix}; \qquad (7)$$

$$X_{\lambda}'Y_{\mu}' - X_{\mu}'Y_{\lambda}' = -1; \tag{8}$$

$$-D'X_{\mu} + D^{*\prime}X_{\lambda} = -1; \tag{9}$$

$$-D'Y_{\mu} + D^{*'}Y_{\lambda} = -1; (10)$$

i. We show equation (7)By definition of U(A[n]),

$$\begin{pmatrix} X_{\lambda} & Y_{\lambda} \\ X_{\mu} & Y_{\mu} \end{pmatrix} = U(A[n-1])(U_R)^{a_n}$$

$$= \begin{pmatrix} X'_{\lambda} & Y'_{\lambda} \\ X'_{\mu} & Y'_{\mu} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -a_n & 1 \end{pmatrix}$$

$$= \begin{pmatrix} X'_{\lambda} - a_n Y'_{\lambda} & Y'_{\lambda} \\ X'_{\mu} - a_n Y'_{\mu} & Y'_{\mu} \end{pmatrix}.$$

By calculation of matrix and determinant, we have

Thus, we obtain

$$X_{\lambda} = X'_{\lambda} - a_n Y'_{\lambda}$$

$$= D'_{n-1,n} - a_n D'_{n,n}$$

$$= -D_{n+1,n+1}.$$

Similarly, we have $Y_{\lambda}=-D_{n,\,n+1}$, $X_{\mu}=-D^*_{\,n+2,\,n+2}$, $Y_{\mu}=-D^*_{\,n+1,\,n+2}$.

ii. We show equation (8)

$$\begin{array}{rcl} X_{\lambda}Y_{\mu} - X_{\mu}Y_{\lambda} & = & \left(X_{\lambda}' - a_{n}Y_{\lambda}' \right)Y_{\mu}' - \left(X_{\mu}' - a_{n}Y_{\mu}' \right)Y_{\lambda}' \\ & = & X_{\lambda}'Y_{\mu}' - a_{n}Y_{\lambda}'Y_{\mu}' - X_{\mu}'Y_{\lambda}' + a_{n}Y_{\mu}'Y_{\lambda}' \\ & = & X_{\lambda}'Y_{\mu}' - X_{\mu}'Y_{\lambda}' \\ & = & -1. \end{array}$$

iii. We show equations (9) and (10).

Expanding the determinant D and D^* with respect to the n+1-th column and n+2-th column respectively, we get $D=D_{n+1,n+1}-D_{n,n+1}$ and $D^*=D_{n+2,n+2}-D_{n+1,n+2}$. Thus, we have

$$-DX_{\mu} + D^*X_{\lambda} = -(D_{n+1,n+1} - D_{n,n+1}) D_{n+1,n+2}^* + (D_{n+2,n+2} - D_{n+1,n+2}) D_{n,n+1}$$

$$= -D_{n+1,n+1} D_{n+1,n+2}^* + D_{n+2,n+2} D_{n,n+1}$$

$$= -Y_{\lambda} X_{\mu} + Y_{\lambda} X_{\mu}$$

$$= -1.$$

$$\begin{array}{rcl} -DY_{\mu} + D^{*}Y_{\lambda} & = & -(D_{n+1,n+1} - D_{n,n+1}) D_{n+2,n+2}^{*} \\ & & +(D_{n+2,n+2}^{*} - D_{n+1,n+2}^{*}) D_{n+1,n+1} \\ & = & D_{n,n+1} D_{n+2,n+2}^{*} - D_{n+1,n+2}^{*} D_{n+1,n+1} \\ & = & X_{\lambda}Y_{\mu} - X_{\mu}Y_{\lambda} \\ & = & -1. \end{array}$$

(b) The case n is odd

By calculations of determinants, equations (4), (5) and (6) will be proven similarly to the case (a).

Thereby, the rest of proof is to show the case n = 1.

2. The case n=1

We get

$$\begin{array}{rcl} U(A[1]) & = & U_0 U_L^{a_1} \\ & = & \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & -a_1 \\ 0 & 1 \end{array} \right) \\ & = & \left(\begin{array}{cc} -1 & a_1 \\ 0 & 1 \end{array} \right). \end{array}$$

On the other hand, we have

$$X_{\lambda} = D_{1,2}(a_1, 1) = -1; \qquad X_{\mu} = D_{2,3}(0, a_1, 1) = \begin{vmatrix} 0 & 1 \\ 0 & -1 \end{vmatrix} = 0;$$

$$Y_{\lambda} = D_{2,2}(a_1, 1) = a_1; \qquad Y_{\mu} = D_{3,3}(0, a_1, 1) = \begin{vmatrix} 0 & 1 \\ -1 & a_1 \end{vmatrix} = 1;$$

$$X_{\lambda}Y_{\mu} - X_{\mu}Y_{\lambda} = (-1) \cdot 1 - 0 \cdot a_1 = -1.$$

Now we show another lemma. We use the following notation for the fractional expansion:

$$[k_1, k_2, \ldots, k_{n-1}, k_n] := \frac{1}{k_1 + \frac{1}{k_2 + \frac{1}{k_n}}}.$$

In the following lemma, the equation (a) and (b) is shown in [9].

Lemma 3.3 For a finite sequence of integer $\{k_1, k_2, \ldots, k_n\}$, we have (a) and (b).

(a)
$$D(k_1, k_2, ..., k_n) = k_1 D(k_2, k_3, ..., k_n) + D(k_3, k_4, ..., k_n)$$
.

(b)
$$[k_1, k_2, \ldots, k_{n-1}, k_n] = \frac{D(0, k_1, k_2, \ldots, k_n)}{D(k_1, k_2, \ldots, k_n)}$$
.

For a finite sequence of natural number $\{k_1, k_2, \ldots, k_n\}$, we get (c)-(g):

(c)
$$D(0, k_1, k_2, ..., k_n) > 0$$
, $D(k_1, k_2, ..., k_n) > 0$.

(d)
$$D(0, k_1, k_2, \ldots, k_n)$$
 and $D(k_1, k_2, \ldots, k_n)$ are coprime.

(e)
$$D(0, k_1, k_2, \ldots, k_n, -1) \leq 0, D(k_1, k_2, \ldots, k_n, -1) \leq 0.$$

(f)
$$-D(0, k_1, k_2, \ldots, k_n, -1)$$
 and $-D(k_1, k_2, \ldots, k_n, -1)$ are coprime.

(g)
$$D_{n+1,n+1}(a_1,\ldots,a_n)$$
 and $-D_{n,n+1}(a_1,\ldots,a_n)$ are coprime.

(h)
$$-D_{n+2, n+2}^*$$
 (a_1, \ldots, a_n) and $D_{n+1, n+2}^*$ (a_1, \ldots, a_n) are coprime.

For a pair of coprime natural number p, q (p > q), we obtain (h):

(i) We choose a sequence of natural numbers $\{k_1, k_2, \ldots, k_n\}$ such that $q/p = [k_1, k_2, \ldots, k_{n-1}, k_n, 1]$. Then we have

$$D_{n+1, n+1}(k_1, k_2, ..., k_n, 1) - D_{n, n+1}(k_1, k_2, ..., k_n, 1) = p$$

Proof.

(a) We expand $D(k_1, k_2, \ldots, k_n)$ with respect to 1-column.

$$(k_{1}, k_{2}, \ldots, k_{n})$$

$$= k_{1} \begin{vmatrix} k_{2} & 1 & & & & & \\ -1 & k_{3} & 1 & & & & \\ & \ddots & \ddots & \ddots & & & \\ & & -1 & k_{n-1} & 1 & & & \\ & & & -1 & k_{n} \end{vmatrix} + \begin{vmatrix} 1 & 0 & & & & \\ -1 & k_{3} & 1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & & -1 & k_{n-1} & 1 & \\ & & & & -1 & k_{n} \end{vmatrix}$$

$$= k_{1} D(k_{2}, k_{3}, \ldots, k_{n}) + D(k_{3}, k_{4}, \ldots, k_{n})$$

$$= k_{1} D(k_{2}, k_{3}, \ldots, k_{n}) + D(k_{3}, k_{4}, \ldots, k_{n})$$

(b) We prove by mathematical induction on n. If n = 1, then we get $\frac{D(0, k_1)}{D(k_1)} = \frac{1}{k_1} = [k_1]$. Assume the case n - 1 is satisfied. Then, we have

$$\frac{D(0, k_1, k_2, \dots, k_n)}{D(k_1, k_2, \dots, k_n)} = \frac{0D(k_1, k_2, \dots, k_n) + D(k_2, k_3, \dots, k_n)}{k_1 D(k_2, k_3, \dots, k_n) + D(k_3, k_4, \dots, k_n)}$$

$$= \frac{1}{k_1 + \frac{D(k_3, k_4, \dots, k_n)}{D(k_2, k_3, \dots, k_n)}}$$

$$= \frac{1}{k_1 + \frac{D(0, k_2, k_3, \dots, k_n)}{D(k_2, k_3, \dots, k_n)}}$$

$$= [k_1, k_2, \dots, k_{n-1}, k_n].$$

(c) We prove by mathematical induction on n. If n = 1, then we get $D(k_1) = k_1 > 0$. If n = 2, then we have $D(k_1, k_2) = k_1 k_2 + 1 > 0$. Assume that the claim is satisfied for all i < n. Then we will show the case n.

We get $D(k_1, k_2, ..., k_n) = k_1 D(k_2, k_3, ..., k_n) + D(k_3, k_4, ..., k_n)$. By the assumption, we have $D(k_2, k_3, ..., k_n) > 0$ and $D(k_3, k_4, ..., k_n) > 0$. Thus, we have $D(k_1, k_2, ..., k_n) > 0$.

By using (a), we obtain $D(0, k_1, k_2, ..., k_n) = D(k_2, k_3, ..., k_n) > 0$.

(d) We prove by mathematical induction on n. If n = 1, then we get $D(k_1, -1) = -k_1 + 1 \le 0$. If n = 2, then we have $D(k_1, k_2, -1) = -k_1(1 - k_2) - 1 \le 0$. Assume that the claim is satisfies for all i < n. Then we will show the case n.

We get $D(k_1, k_2, \ldots, k_n, -1) = k_1 D(k_2, k_3, \ldots, k_n, -1) + D(k_3, k_4, \ldots, k_n, -1)$. By the assumption, we have $D(k_2, k_3, \ldots, k_n, -1) \le 0$ and $D(k_3, k_4, \ldots, k_n, -1) \le 0$. Thus, we have $D(k_1, k_2, \ldots, k_n, -1) \le 0$.

By using (a), we obtain $D(0, k_1, k_2, ..., k_n, -1) = D(k_2, k_3, ..., k_n, -1) \le 0$.

- (e) We prove by mathematical induction on n.
 - 1. The case n=1Since $D(0, k_1) = 1$ and $D(k_1) = k_1$, $D(0, k_1)$ and $D(k_1)$ are coprime.
 - 2. Assume that the case n-1 is satisfied. Then we will show the case n. We get

$$D(0, k_1, k_2, ..., k_n) = 0D(k_1, k_2, ..., k_n) + D(k_2, k_3, ..., k_n)$$

$$= D(k_2, k_3, ..., k_n);$$

$$D(k_1, k_2, ..., k_n) = k_1 D(k_2, k_3, ..., k_n) + D(k_3, k_4, ..., k_n)$$

$$= k_1 D(k_2, k_3, ..., k_n) + D(0, k_2, k_3, ..., k_n).$$

 $D(k_2, k_3, \ldots, k_n)$ and $D(0, k_2, k_3, \ldots, k_n)$ are coprime by assumption. This completes the proof.

- (f) The proof is similar to (e). We prove by mathematical induction on n.
 - 1. The case n = 1Since $-D(0, k_1, -1) = 1$ and $-D(k_1, -1) = k_1 - 1$, $D(0, k_1, -1)$ and $D(k_1, -1)$ are coprime.
 - 2. Assume that the case n-1 is satisfies. Then we get

$$-D(0, k_1, ..., k_n, -1) = -D(k_2, ..., k_n, -1).$$

$$-D(k_1, ..., k_n, -1)$$

$$= -k_1 D(k_2, ..., k_n, -1) - D(k_3, ..., k_n, -1)$$

$$= k_1 (-D(k_2, ..., k_n, -1)) + (-D(0, k_2, ..., k_n, -1)).$$

 $-D(k_2, k_3, \ldots, k_n - 1)$ and $-D(0, k_2, k_3, \ldots, k_n - 1)$ are coprime by assumption. This completes the proof.

(g) By definition of $D_{i,j}$ (k_1, \ldots, k_n) , we get

$$D_{n+1,n+1}(a_1,\ldots,a_n,1)=D(a_1,\ldots,a_n).$$

By calculation of determinant, we have

$$-D_{n,n+1}(a_1,\ldots,a_n,1)=D(a_1,\ldots,a_{n-1}).$$

By Definition of $D(k_1, \ldots, k_n)$,

$$D(a_1, a_2, \ldots, a_n) = D(a_n, a_{n-1}, \ldots, a_1).$$

By (a), we have,

$$D(a_{n-1}, a_{n-2}, ..., a_1)$$

$$= 0D(a_n, a_{n-1}, ..., a_1) + D(a_{n-1}, a_{n-2}, ..., a_1)$$

$$= D(0, a_n, a_{n-1}, ..., a_1).$$

By (d), $D(a_n, a_{n-1}, \ldots, a_1)$ and $D(0, a_n, a_{n-1}, \ldots, a_1)$ are coprime. Thus, $D_{n+1, n+1}$ and $-D_{n, n+1}$ are coprime.

- (h) The proof is similar to (g).
- (i) From (b), we get $q/p = [k_1, k_2, \ldots, k_{n-1}, k_n, 1] = \frac{D(0, k_1, k_2, \ldots, k_n, 1)}{D(k_1, k_2, \ldots, k_n, 1)}$. By (c) and (e), we have $D(k_1, k_2, \ldots, k_n, 1) = p$. Expanding $D(k_1, k_2, \ldots, k_n, 1)$ with respect to n+1 column, we get our claim.

Lemma 3.4 For i=1,2, let θ_i be a θ -curve shown in Figure 20 and T_i be a torus. Assume that there exists embeddings $\phi_i:\theta_i\hookrightarrow T_i$ such that $T_i\setminus\phi(\theta_i)\cong Int(D^2)$. Then, there exists a homeomorphism $\varphi_{12}:T_1\to T_2$ such that $\varphi_{12}(\alpha_1)=\alpha_2$, $\varphi_{12}(\beta_1)=\beta_2$ and $\varphi_{12}(\gamma_1)=\gamma_2$.

Proof. Let $\Phi_{12}: \theta_1 \to \theta_2$ be a map defined by identifying the oriented edges α_1 , β_1 , γ_1 and α_2 , β_2 , γ_2 respectively. Then, cutting off T_i along $\phi_i(\theta_i)$, we get the 2-disc D_i^2 shown in Figure 21. Thus, the map Φ_{12} is extended to the homeomorphism $\Phi_{12}^*: D_1 \to D_2$ using Alexander trick. Thus, there exists a homeomorphism $\varphi_{12}: T_1 \to T_2$. such that $\varphi_{12}(\alpha_1) = \alpha_2$, $\varphi_{12}(\beta_1) = \beta_2$ and $\varphi_{12}(\gamma_1) = \gamma_2$.

Figure 20: θ_i

Figure 21: D_i^2

4 Relations between the elements of $\pi_1(T_{\phi})$ and of $\pi_1(B^3/f_{\hat{X}})$

In this section, we consider the relations between the elements of the fundamental group of $B^3/f_{\hat{X}}$ and T_{ϕ} . Using those, we discuss about the meridian of $T_{w(L,R)}$ in section 5.

First we prepare the following proposition. Recall the definition of $D_{w(L,R)}$ and $A_{\hat{X}}$, see Notation 2.3 and Notation 2.11 respectively.

Proposition 4.1

- 1. $T_{w(L,R)} \setminus (\partial T_{w(L,R)} \cup (D_{w(L,R)} / f_{w(L,R)}))$ is homeomorphic to an open 3-ball.
- 2. $(B^3/f_{\hat{X}})\setminus (\partial (B^3/f_{\hat{X}})\cup (A_{\hat{X}}/f_{\hat{X}}))$ is homeomorphic to an open 3-ball.

Proof.

- 1. Recall that $T_{w(L,R)}$ is $B^3 / f_{w(L,R)}$. By definition, we have $E_{w(L,R)} \cup D_{w(L,R)} = \partial B^3$ and $E_{w(L,R)} / f_{w(L,R)} = \partial T_{w(L,R)}$. Thus, $T_{w(L,R)} \setminus \left(\partial T_{w(L,R)} \cup \left(D_{w(L,R)} / f_{w(L,R)} \right) \right)$ is homeomorphic to $B^3 \setminus \partial B^3$.
- 2. The proof is similar to the case 1.

At first, we consider the fundamental group of a solid torus T_{ϕ} . By Proposition 4.1, any loop embedded in T_{ϕ} is homotopic to some loop embedded in D_{ϕ}/f_{ϕ} . Thus, the fundamental group of T_{ϕ} is isomorphic to the fundamental group of D_{ϕ}/f_{ϕ} . Recall the notations $x_{w(L,R)}$ and $y_{w(L,R)}$, see Notation 2.8.

Proposition 4.2 Let $[x_{\phi}]$, $[y_{\phi}]$ be homotopy class of two loops x_{ϕ} , y_{ϕ} in $\pi_1(T_{\phi})$ respectively. Then, $\pi_1(T_{\phi})$ is one generator free group and we get the following relations:

$$\pi_1(T_{\phi}) = \langle P \mid - \rangle; \qquad [x_{\phi}] = P; \qquad [y_{\phi}] = 0,$$

where the generator P is the representative element of the loop associated to edge P of ϕ -diagram shown in Figure 7.

Proof. We choose a maximal tree for $(Q \cup \beta)/f_{\phi}$ and fix a base point v_0 . Then, we get

$$\pi_{1}(T_{\phi}, v_{0}) = \pi_{1}(D_{\phi}/f_{\phi}, v_{0})
= \langle \alpha, \gamma, P, A \mid P^{-1}\alpha, A\gamma^{-1}PAP^{-1}, A \rangle
= \langle \alpha, P, \gamma \mid P^{-1}\alpha, \gamma^{-1}PP^{-1} \rangle
= \langle P \mid - \rangle.$$

Thus, we have the following relation in $\pi_1(T_{\phi}, v_0)$.

$$[x_{\phi}] = [\alpha_{\phi}\beta_{\phi}] = [P]; \qquad [y_{\phi}] = [\beta_{\phi}\gamma_{\phi}] = 0.$$

This relation depend on the choice neither of the base point nor of the maximal tree.

We consider the fundamental group of $B^3/f_{\hat{X}}$, where $X=L,R,\bar{L},\bar{R}$. Note that f_X is the identification map associated to the X-diagram and $f_{\hat{X}}$ is the identification map associated to the X-ring. Recall the notation $\alpha_{\hat{X}}$, $\beta_{\hat{X}}$, $\gamma_{\hat{X}}$, $\alpha'_{\hat{X}}$, $\beta'_{\hat{X}}$, $\gamma'_{\hat{X}}$, see Notation 2.13.

Proposition 4.3 Let the elements $[\tilde{\alpha}_X]$, $[\tilde{\gamma}_X]$, $[\tilde{\alpha}'_X]$, $[\tilde{\gamma}'_X]$ in $\pi_1(B^3/f_{\hat{X}})$ be homotopy class of the loops $\alpha_{\hat{X}}\beta_{\hat{X}}$, $\beta_{\hat{X}}\gamma_{\hat{X}}$, $\alpha'_{\hat{X}}\beta'_{\hat{X}}$, $\beta'_{\hat{X}}\gamma'_{\hat{X}}$, embedded in $\partial(B^3/f_{\hat{X}})$ respectively. Then, $\pi_1(B^3/f_{\hat{X}})$ is commutative group and we get the following relations in $\pi_1(B^3/f_{\hat{X}})$:

1. The case X = L

$$\left[\tilde{\alpha}_{L}\right] = \left[\tilde{\alpha}_{L}'\right]; \qquad \left[\tilde{\gamma}_{L}\right] = -\left[\tilde{\alpha}_{L}'\right] + \left[\tilde{\gamma}_{L}'\right].$$

2. The case X = R

$$[\tilde{\alpha}_R] = [\tilde{\alpha}'_R] - [\tilde{\gamma}'_R];$$
 $[\tilde{\gamma}_R] = [\tilde{\gamma}'_R].$

3. The case $X = \overline{L}$

$$[\tilde{\alpha}_{\bar{L}}] = [\tilde{\alpha}'_{\bar{L}}]; \qquad [\tilde{\gamma}_{\bar{L}}] = [\tilde{\alpha}'_{\bar{L}}] + [\tilde{\gamma}'_{\bar{L}}].$$

4. The case $X = \bar{R}$

$$[\tilde{\alpha}_{\bar{R}}] = [\tilde{\alpha}'_{\bar{R}}] + [\tilde{\gamma}'_{\bar{R}}]; \qquad [\tilde{\gamma}_{\bar{R}}] = [\tilde{\gamma}'_{\bar{R}}].$$

Proof.

1. The case X = L

By Proposition 4.1, any loop embedded in $B^3/f_{\hat{L}}$ is homotopic to some loop embedded in $A_{\hat{X}}/f_{\hat{L}}$. Thus, the fundamental group of $B^3/f_{\hat{L}}$ is isomorphic to the fundamental group of $A_{\hat{X}}/f_{\hat{L}}$.

We choose a maximal tree of $A_{\hat{X}}/f_{\hat{L}}$ for $(Q \cup P \cup A \cup \beta')/f_{\hat{L}}$ and fix a base point v_3 . Then, we get

$$\pi_{1}(M_{L}, v_{3}) = \pi_{1}(A_{\hat{L}}/f_{\hat{L}}, v_{3})$$

$$= \left\langle \begin{array}{ccc} \alpha', \ \gamma', \ B \\ \alpha, \ \beta, \ \gamma \end{array} \right| \left\langle \begin{array}{ccc} \alpha'B, \ B\alpha, \ \beta, \ \gamma B^{-1}\gamma'^{-1} \\ \alpha'\gamma'\alpha'^{-1}\gamma'^{-1}, \ \alpha\beta\gamma\alpha^{-1}\beta^{-1}\gamma^{-1} \end{array} \right\rangle$$

$$= \left\langle \begin{array}{ccc} \alpha', \ \gamma', \ B \\ \alpha, \ \gamma \end{array} \right| \left\langle \begin{array}{ccc} \alpha'B, \ B\alpha, \ \gamma B^{-1}\gamma'^{-1} \\ \alpha'\gamma'\alpha'^{-1}\gamma'^{-1}, \ \alpha\gamma\alpha^{-1}\gamma^{-1} \end{array} \right\rangle$$

$$= \left\langle \begin{array}{ccc} \alpha', \ \gamma', \ \alpha, \ \gamma \end{array} \right| \left\langle \begin{array}{ccc} \alpha'^{-1}\alpha, \ \gamma\alpha'\gamma'^{-1} \\ \alpha'\gamma'\alpha'^{-1}\gamma'^{-1}, \ \alpha\gamma\alpha^{-1}\gamma^{-1} \end{array} \right\rangle$$

$$= \left\langle \alpha', \ \gamma', \ \alpha, \ \gamma \right| \left\langle \begin{array}{ccc} \alpha'^{-1}\alpha, \ \gamma\alpha'\gamma'^{-1}, \ \alpha\gamma\alpha^{-1}\gamma^{-1} \\ \alpha'\gamma'\alpha'^{-1}\gamma'^{-1}, \ \alpha\gamma\alpha^{-1}\gamma^{-1} \end{array} \right\rangle$$

$$= \left\langle \begin{array}{ccc} \alpha', \ \gamma', \ \alpha, \ \gamma \right| \left\langle -\alpha' + \alpha, \ \gamma + \alpha' - \gamma' \right\rangle,$$

where $\ll \gg$ means omitting commutative relations. This relation depends on neither of the choice of the base point nor of the maximal tree.

2. The case X = R

We choose maximal tree of $A_{\hat{R}}/f_{\hat{R}}$ for $(Q \cup P \cup A \cup \beta')/f_{\hat{R}}$ and we calculate $\pi_1(B^3/f_{\hat{R}})$ similar to the case 1.

3. The case $X = \bar{L}, \bar{R}$

We choose maximal tree of $A_{\hat{X}}/f_{\hat{X}}$ for $(B \cup P \cup A \cup \beta)/f_{\hat{X}}$ and we calculate $\pi_1(B^3/f_{\hat{X}})$ similar to the case 1, where $X = \bar{L}, \bar{R}$

5 Meridian and longitude of $T_{w(L,R)}$

In this section, we discuss the meridian and longitude of $T_{w(L,R)}$, where $meridian\ m_{w(L,R)}$ of $T_{w(L,R)}$ is defined as a loop embedded in $\partial T_{w(L,R)}$ such that $[m_{w(L,R)}] = 0$ in $\pi_1(T_{w(L,R)})$ and $longitude\ l_{w(L,R)}$ of $T_{w(L,R)}$ is defined as a loop embedded in $\partial T_{w(L,R)}$ such that $[l_{w(L,R)}] \neq 0$ in $\pi_1(T_{w(L,R)})$ and $l_{w(L,R)}$ intersects $m_{w(L,R)}$ at one point in $\partial T_{w(L,R)}$.

Recall the loops $x_{w(L,R)}$, $y_{w(L,R)}$ embedded in $\partial T_{w(L,R)}$, see Notation 2.8. By Remark 2.10, any loop embedded in $\partial T_{w(L,R)}$ is represented by the element $a[x_{w(L,R)}] + b[y_{w(L,R)}](a,b \in \mathbb{Z})$ uniquely. In Proposition 5.2 and Proposition 5.5, we decide the coefficient a, b in the case $w(L,R) = \phi$ and $w(L,R) \neq \phi$ respectively.

First we consider the case $w(L, R) = \phi$.

Notation 5.1 Two loops y_{ϕ} and x_{ϕ}^{-1} embedded in ∂T_{ϕ} are denoted by m and l respectively.

Proposition 5.2 Let [m] and [l] be the homotopy class of the loops m and l. Then, we get the following conditions:

- 1. The loop m is the meridian of T_{ϕ} , that is, [m] = 0 in $\pi_1(T_{\phi})$;
- 2. The loop l is longitude of T_{ϕ} , that is, $[l] \neq 0$ in $\pi_1(T_{\phi})$ and two loops l and m are homotopic to the two loops which intersect one point each other;
- 3. $[z_{\phi}] = [l] + [m] \text{ in } \pi_1(\partial T_{\phi}).$

Proof.

- 1. By Notation 5.1 and Proposition 4.2, $[m] = [y_{\phi}] = 0$ in $\pi_1(T_{\phi})$.
- 2. By Notation 5.1 and Proposition 4.2, $[l] = [x_{\phi}] \neq 0$ in $\pi_1(T_{\phi})$. From Proposition 2.9(a), (b), x_{ϕ} and y_{ϕ} are homotopic to two loops intersecting at one point in ∂T_{ϕ} .
- 3. By Proposition 2.9(c), we have $[z_{\phi}] = [y_{\phi}] [x_{\phi}]$ in $\pi(\partial T_{\phi})$. Thus, $[z_{\phi}] = [l] + [m]$ in $\pi_1(\partial T_{\phi})$.

By Notation 5.1 and Proposition 5.2, we obtain the following relation in $\pi_1(T_{\phi})$.

where $^{t}($) means transposition and U_{0} is defined in Definition 3.1.

Now, we consider the meridian and longitude of $T_{w(L,R)}$ in the case the word $w(L,R) \neq \phi$. By Proposition 2.7, Proposition 2.12 and Lemma 3.4, there exists a homeomorphism $\varphi: \partial T_{w(L,R)} \to E'_{\hat{X}}/f_{\hat{X}} \subset \partial M_{\hat{X}}$, where $M_{\hat{X}}$ is $B^3/f_{\hat{X}}$. The manifold obtained by gluing $T_{w(L,R)}$ and $M_{\hat{X}}$ by φ is denoted by $T_{w(L,R)} \cup_{\varphi} M_{\hat{X}}$.

Lemma 5.3 For any word w(L,R) and $X \in \{L,R,\bar{L},\bar{R}\}$, the manifold $T_{w(L,R)} \cup_{\varphi} M_{\hat{X}}$ is homeomorphic to $T_{w(L,R)X}$.

Proof. Recall the notation of $E_{w(L,R)}$ and $E'_{\hat{X}}$, see Notation 2.3 and Notation 2.11. By definition of gluing map φ , torus $E_{w(L,R)}/f_{w(L,R)}$ ($\subset \partial T_{w(L,R)}$) and torus $E'_{\hat{X}}/f_{\hat{X}}$ ($\subset \partial M_{\hat{X}}$) are identified such that $\varphi(\alpha) = \alpha'$, $\varphi(\beta) = \beta'$, $\varphi(\gamma) = \gamma'$, see Figure 22. Thus, the manifold $T_{w(L,R)} \cup_{\varphi} M_{\hat{X}}$ is obtained from by $B^3/f_{w(L,R)X}$.

Figure 22: Gluing map φ

By gluing map φ , two loops $\varphi(x_{w(L,R)})$ and $\varphi(y_{w(L,R)})$ are embedded in $T_{w(L,R)X}$, see Figure 22. Thus, four loops $\varphi(x_{w(L,R)})$, $\varphi(y_{w(L,R)})$, $x_{w(L,R)X}$ and $y_{w(L,R)X}$ are embedded in $T_{w(L,R)X}$. Thus, there exists integers a,b,c,d such that we get the following equations in $\pi_1(T_{w(L,R)X})$:

$$\begin{array}{lll} [\,x_{w(L,R)X}\,] & = & a\,[\,\varphi(\,x_{w(L,R)}\,)\,] + b\,[\,\varphi(\,y_{w(L,R)}\,)\,]; \\ [\,y_{w(L,R)X}\,] & = & c\,[\,\varphi(\,x_{w(L,R)}\,)\,] + d\,[\,\varphi(\,y_{w(L,R)}\,)\,]. \end{array}$$

The following proposition tells us the integers a,b,c,d. For convenience, we denote $\varphi(x_{w(L,R)}), \varphi(y_{w(L,R)})$ by $x_{w(L,R)}, y_{w(L,R)}$ respectively.

Proposition 5.4 For any word w(L,R), homotopy class of the loops $x_{w(L,R)}$, $y_{w(L,R)}$, $x_{w(L,R)X}$, $y_{w(L,R)X}$ satisfy the following equation in $\pi_1(T_{w(L,R)X})$, where $X = L, R, \overline{L}, \overline{R}$:

$$\begin{pmatrix} \begin{bmatrix} x_{w(L,R)X} \end{bmatrix} \\ \begin{bmatrix} y_{w(L,R)X} \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} x_{w(L,R)} \end{bmatrix} \\ \begin{bmatrix} y_{w(L,R)} \end{bmatrix} \end{pmatrix} U_X,$$

where U_X is defined in Definition 3.1.

Proof.

1. The case X = L

Since $T_{w(L,R)}$ is solid torus, $\pi_1(T_{w(L,R)})$ is one generator free group. Thus, we suppose that

$$\pi_1(T_{w(L,R)}, v_0) = \langle G \mid - \rangle; \qquad [x_{w(L,R)}] = mG; \qquad [y_{w(L,R)}] = lG,$$

where v_0 is the vertex v_0 of w(L,R) - diagram. We have

$$\pi_1(T_{w(L,R)} \cap M_{\hat{L}}, v_0) = \langle \alpha', \gamma' \mid \alpha' \gamma' \alpha'^{-1} \gamma'^{-1} \rangle$$

= $\langle \alpha', \gamma' \mid - \rangle$,

where «>> means omitting commutative relations. By Proposition 4.3,

$$\pi_1(M_{\hat{L}}, v_2) = \ll \alpha', \ \gamma', \ \alpha, \ \gamma \mid \ -\alpha' + \alpha, \ \gamma + \alpha' - \gamma' \gg,$$

where v_2 is vertex v_2 of L-ring, see Figure 3. By gluing map φ , the vertex v_2 of $M_{\hat{L}}$ is identified with v_0 of $T_{w(L,R)}$. According to the theorem of Seifert-van Kampen, we get

$$\pi_1(T_{w(L,R)L}, v_2)$$

$$= \ll G, \ \alpha', \ \gamma', \ \alpha, \ \gamma \mid -\alpha' + \alpha, \ \gamma + \alpha' - \gamma', \ \alpha' = mG, \ \gamma' = lG \gg$$

$$= \ll G, \ \alpha, \ \gamma \mid -mG + \alpha, \ \gamma + mG - lG \gg$$

$$= \ll G \mid - \gg.$$

and

$$[\tilde{\alpha}_L] = mG = [\tilde{\alpha}'_L];$$
 $[\tilde{\gamma}_L] = -mG + lG = -[\tilde{\alpha}'_L] + [\tilde{\gamma}'_L].$

Thereby, we have the following relations:

$$[x_{w(L,R)X}] = [\tilde{\alpha}_L] = mG = [\tilde{\alpha}'_L] = [x_{w(L,R)}];$$

$$[y_{w(L,R)X}] = [\tilde{\gamma}_L] = -mG + lG = -[\tilde{\alpha}'_L] + [\tilde{\gamma}'_L] - [x_{w(L,R)}] + [y_{w(L,R)}].$$

Thus, we obtain the following relation in $\pi_1(T_{w(L,R)L})$:

$$\begin{pmatrix}
 [x_{w(L,R)L}] \\
 [y_{w(L,R)L}]
 \end{bmatrix} = \begin{pmatrix}
 [x_{w(L,R)}] \\
 [y_{w(L,R)}]
 \end{pmatrix} \begin{pmatrix}
 1 & -1 \\
 0 & 1
 \end{pmatrix}$$

$$= \begin{pmatrix}
 [x_{w(L,R)}] \\
 [y_{w(L,R)}]
 \end{pmatrix} U_L,$$

where U_L is defined in Definition 3.1.

2. The case $X = R, \bar{L}, \bar{R}$

Calculating $\pi_1(T_{w(L,R)X}, v_0)$ similar to the case 1, we have

$$\begin{pmatrix} \begin{bmatrix} x_{w(L,R)X} \end{bmatrix} \\ \begin{bmatrix} y_{w(L,R)X} \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} x_{w(L,R)} \end{bmatrix} \\ \begin{bmatrix} y_{w(L,R)} \end{bmatrix} \end{pmatrix} U_X,$$

where $X = R, \bar{L}, \bar{R}$.

Recall that two loops m and l are embedded in ∂T_{ϕ} . By Lemma 5.3, there exists two loops $m_{w(L,R)}$ and $l_{w(L,R)}$ embedded in $\partial T_{w(L,R)}$ such that

$$egin{aligned} [m_{w(L,R)}] &= [m] & in \ \pi_1(T_{w(L,R)}); \ [l_{w(L,R)}] &= [l] & in \ \pi_1(T_{w(L,R)}). \end{aligned}$$

By Remark 2.10, there exists integer a, b, c, d such that

$$[m_{w(L,R)}] = a [x_{w(L,R)}] + b [y_{w(L,R)}]$$
 in $\pi_1(\partial T_{w(L,R)});$
$$[l_{w(L,R)}] = c [x_{w(L,R)}] + d [y_{w(L,R)}]$$
 in $\pi_1(\partial T_{w(L,R)}).$

Proposition 5.6 tells us the coefficient a, b, c, d and $m_{w(L,R)}$ and $l_{w(L,R)}$ are the meridian and longitude of $T_{w(L,R)}$.

First we show the following proposition. Recall the notation $D_{i,j}$, $D_{i,j}^*$, D and D^* in Lemma 3.2.

Proposition 5.5 For a finite sequence of a natural number $A[n] := \{a_1, a_2, \ldots, a_{n-1}, a_n\}$, we define a word on the letter $\{L,R\}$ as follow:

$$w(A[n]) := \left\{ \begin{array}{ll} L^{a_1} \, R^{a_2} \, L^{a_3} \, \cdots \, L^{a_{n-2}} \, R^{a_{n-1}} \, L^{a_n} & (n \, : \, odd) \\ L^{a_1} \, R^{a_2} \, L^{a_3} \, \cdots \, R^{a_{n-2}} \, L^{a_{n-1}} \, R^{a_n} & (n \, : \, even) \end{array} \right. .$$

Then, we get the following conditions:

(a) The case n is odd

1.
$$[m] = D_{n+1,n+1} [x_{w(A[n])}] - D_{n,n+1} [y_{w(A[n])}]$$
 in $\pi_1(T_{w(A[n])})$;
2. $[l] = -D_{n+2,n+2}^* [x_{w(A[n])}] + D_{n+1,n+2}^* [y_{w(A[n])}]$ in $\pi_1(T_{w(A[n])})$.

(b) The case n is even

1.
$$[m] = -D_{n,n+1} [x_{w(A[n])}] + D_{n+1,n+1} [y_{w(A[n])}]$$
 in $\pi_1(T_{w(A[n])})$;

2.
$$[l] = D_{n+1, n+2}^* [x_{w(A[n])}] - D_{n+2, n+2}^* [y_{w(A[n])}]$$
 in $\pi_1(T_{w(A[n])})$.

Proof.

(a) The case n is odd

By Proposition 5.4, we get

By Lemma 3.2, we have

$$\begin{pmatrix}
[l] \\
[m]
\end{pmatrix} U_0 U_L^{a_1} U_R^{a_2} U_L^{a_3} \cdots U_L^{a_{n-2}} U_R^{a_{n-1}} U_L^{a_n} \\
= \begin{pmatrix}
[l] \\
[m]
\end{pmatrix} \begin{pmatrix}
D_{n,n+1} & D_{n+1,n+1} \\
D_{n+1,n+2}^* & D_{n+2,n+2}^*
\end{pmatrix}.$$

Thus, we obtain

$$\begin{cases}
[x_{w(A[n])}] = D_{n,n+1}[l] + D_{n+1,n+2}^*[m] \\
[y_{w(A[n])}] = D_{n+1,n+1}[l] + D_{n+2,n+2}^*[m]
\end{cases}$$

$$\leftrightarrow \begin{cases}
[m] = D_{n+1,n+1}[x_{w(A[n])}] - D_{n,n+1}[y_{w(A[n])}] \\
[l] = -D_{n+2,n+2}^*[x_{w(A[n])}] + D_{n+1,n+2}^*[y_{w(A[n])}]
\end{cases}$$

(b) The case n is even

By Proposition 5.4, we can prove similarly to the case (a).

Proposition 5.6 The meridian $m_{w(A[n])}$ and the longitude $l_{w(A[n])}$ of solid torus $T_{w(A[n])}$ are represented by as follows:

(a) The case n is odd

1.
$$[m_{w(A[n])}] = D_{n+1,n+1} [x_{w(A[n])}] - D_{n,n+1} [y_{w(A[n])}]$$
 in $\pi_1(\partial T_{w(A[n])})$;

2.
$$[l_{w(A[n])}] = -D_{n+2,n+2}^* [x_{w(A[n])}] + D_{n+1,n+2}^* [y_{w(A[n])}]$$
 in $\pi_1(\partial T_{w(A[n])})$.

(b) The case n is even

1.
$$[m_{w(A[n])}] = -D_{n,n+1} [x_{w(A[n])}] + D_{n+1,n+1} [y_{w(A[n])}]$$
 in $\pi_1(\partial T_{w(A[n])})$;

2.
$$[l_{w(A[n])}] = D_{n+1, n+2}^* [x_{w(A[n])}] - D_{n+2, n+2}^* [y_{w(A[n])}] \quad \text{in } \pi_1(\partial T_{w(A[n])}).$$

Proof.

(a) The case n is odd

By Proposition 5.5, $[m_{(A[n])}] = [m]$ in $\pi_1(T_{w(A[n])})$. By Proposition 5.2, [m] = 0 in $\pi_1(T_{w(A[n])})$. Thus, $[m_{(A[n])}] = 0$ in $\pi_1(T_{w(A[n])})$. Similarly, $[l_{(A[n])}] = [l] \neq 0$ in $\pi_1(T_{w(A[n])})$.

Thus, the rest of proof is to show the following equations:

- i. $D_{n+1,n+1}$ and $-D_{n,n+1}$ are coprime.
- ii. $-D_{n+2,n+2}^*$ and $D_{n+1,n+2}^*$ are coprime.
- iii. $D_{n+1,n+1}D_{n+1,n+2}^* D_{n,n+1}(-D_{n+2,n+2}^*) = 1 \text{ or } -1$

These are shown in Lemma 3.3(g),(h) and the equation (5) in Lemma 3.2 respectively.

(b) The case n is even Similar to the case (a).

6 Lens space obtained by gluing $T_{w(L,R)}$ and $T_{w'(L,R)}$

In this section, we define the gluing of two solid tori $T_{w(L,R)}$ and $T_{w'(L,R)}$. Then, we show the following fact in Theorem 6.1: for any pair of coprime natural number p, q (p > q), we can choose two words w(L,R) and w'(L,R) such that L(p,q) is homeomorphic to the manifold obtained by gluing of two solid tori $T_{w(L,R)}$ and $T_{w'(L,R)}$.

First we see the gluing of two solid tori $T_{w(L,R)}$ and $T_{w'(L,R)}$. For convenience, w(L,R) and w'(L,R) are denoted by w and w'. By Proposition 2.7 and Lemma 3.4, there exists a homeomorphism $\varphi: \partial T_{w(L,R)} \to \partial T_{w'(L,R)}$. The manifold obtained from gluing T_w and $T_{w'}$ by φ is denoted by $T_w \cup_{\varphi} T_{w'}$.

Theorem 6.1 For any pair of coprime natural number p, q (p > q), we choose a sequence of natural numbers $\{a_1, a_2, \ldots, a_{n-1}, a_n\}$ such that the fractional expansion of q/p is $[a_1, a_2, \ldots, a_{n-1}, a_n, -1]$ and define a word v(q/p) as follows:

$$v(q/p) := \begin{cases} L^{a_1} R^{a_2} L^{a_3} \cdots L^{a_{n-2}} R^{a_{n-1}} L^{a_n} & (n : odd) \\ L^{a_1} R^{a_2} L^{a_3} \cdots R^{a_{n-2}} L^{a_{n-1}} R^{a_n} & (n : even) \end{cases}$$

Then, we get $L(p,q) \cong T_L \cup_{\varphi} T_{v(q/p)}$. In particular, $S^3 \cong T_L \cup_{\varphi} T_{LL}$ and $S^2 \times S^1 \cong T_L \cup_{\varphi} T_L$.

Proof.

1. We show $L(p,q) \cong T_L \cup_{\varphi} T_{v(q/p)}$

We use the same notations $D_{i,j}$ and $D_{i,j}^*$ in Lemma 3.2. For convenience, we denote a word v(q/p) by v. By Proposition 5.6, we get the following relation about the meridian m_L of the solid torus T_L :

$$[m_L] = [x_L] + [y_L];$$
 in $\pi_1(\partial T_L)$. (12)

(a) The case of n is odd

By Proposition 5.6, we have the following relations about the meridian m_v of the solid torus T_v :

$$[m_v] = D_{n+1,n+1} [x_v] - D_{n,n+1} [y_v]; \quad in \ \pi_1(\partial T_v). \tag{13}$$

By Proposition 5.6, we have the following relations about the longitude l_v of the solid torus T_v :

$$[l_v] = -D_{n+2,n+2}^* [x_v] + D_{n+1,n+2}^* [y_v]; \quad in \ \pi_1(\partial T_v).$$
 (14)

According to definition of φ , we obtain

$$\varphi(x_L) = x_v; \qquad \qquad \varphi(y_L) = y_v. \tag{15}$$

Let $\varphi^{\#}: \pi_1(\partial T_L) \to \pi_1(\partial T_v)$ be a homomorphism induced by homeomorphism φ . Using the equations (12) and (15), we have

$$[\varphi(m_L)] = \varphi^{\#}([m_L])$$

$$= \varphi^{\#}([x_L] + [y_L])$$

$$= \varphi^{\#}([x_L]) + \varphi^{\#}([y_L])$$

$$= [\varphi(x_L)] + [\varphi(y_L)]$$

$$= [x_v] + [y_v]. \tag{16}$$

By equations (13), (14) and (16), we get the following equation in $\pi_1(\partial T_v)$:

$$[\varphi(m_L)] = (D_{n+2,n+2}^* + D_{n+1,n+2}^*)[m_v] + (D_{n+1,n+1} + D_{n,n+1})[l_v].$$

We have the following equations:

$$D_{n+1, n+1} + D_{n, n+1} = D(a_1, a_2, \dots, a_{n-1}, a_n - 2, 1)$$

$$= D(a_1, a_2, \dots, a_{n-1}, a_n, -1);$$

$$D_{n+2, n+2}^* + D_{n+1, n+2}^* = D(0, a_1, a_2, \dots, a_{n-1}, a_n - 2, 1)$$

$$= D(0, a_1, a_2, \dots, a_{n-1}, a_n, -1).$$

Thus, we have

$$\frac{D_{n+2,n+2}^* + D_{n+1,n+2}^*}{D_{n,n+1} + D_{n+1,n+1}} = \frac{D(0, a_1, a_2, \ldots, a_{n-1}, a_n, -1)}{D(a_1, a_2, \ldots, a_{n-1}, a_n, -1)}.$$

By Lemma 3.3(b) and the definition of $\{a_1, a_2, \ldots, a_{n-1}, a_n\}$, we get

$$\frac{D(0, a_1, a_2, \ldots, a_{n-1}, a_n, -1)}{D(a_1, a_2, \ldots, a_{n-1}, a_n, -1)} = [a_1, a_2, \ldots, a_{n-1}, a_n, -1] = \frac{q}{p}.$$

By Lemma 3.3(e), $D(0, a_1, \ldots, a_n, -1) \leq 0$ and $D(a_1, \ldots, a_n, -1) \leq 0$. From Lemma 3.3(f), $-D(0, a_1, \ldots, a_n, -1)$ and $-D(a_1, \ldots, a_n, -1)$ are coprime. So, we have $D(0, a_1, \ldots, a_n, -1) = -q$, $D(a_1, \ldots, a_n, -1) = -p$. Thus, we obtain $(D_{n+2, n+2}^* + D_{n+1, n+2}^*, D_{n, n+1} + D_{n+1, n+1}) = (-q, -p)$. Thereby, the manifold $T_L \cup_{\varphi} T_v$ is homeomorphic to the lens space L(p, q). (b) The case n is even By Proposition 5.5, we have the following equation in $\pi_1(\partial T_n)$:

$$[\varphi(m_L)] = (D_{n+2,n+2}^* + D_{n+1,n+2}^*)[m_v] + (D_{n+1,n+1} + D_{n,n+1})[l_v].$$

Thereby, the manifold $T_L \cup_{\varphi} T_v$ is homeomorphic to the lens space L(p,q).

2. We show $S^3 \cong T_L \cup_{\varphi} T_{LL}$ By Proposition 5.6, we get

$$[\varphi(m_L)] = [m_{LL}] + [l_{LL}].$$

3. We show $S^2 \times S^1 \cong T_L \cup_{\varphi} T_L$ By Proposition 5.6, we get

$$[\varphi(m_L)] = [m_L]$$

7 Type of $T_{w(L,R)}$

For a pair of coprime natural number p, q (p > q), we will define a word w(q/p) on the letters $\{L, R\}$ and we call $T_{w(q/p)}$ q/p type solid torus. In section 8, we will see that q/p type solid torus corresponds to (p, q) type singular fiber.

First we show the following proposition. Recall that the loop $z_{w(L,R)}$ is defined as the loop $\gamma_{w(L,R)}\alpha_{w(L,R)}^{-1}$ embedded in $\partial T_{w(L,R)}$. We denote the homotopy class in $\pi_1(\partial T_{w(L,R)})$ of the loop $z_{w(L,R)}$ by $[z_{w(L,R)}]$.

Proposition 7.1 For any pair of coprime natural number p, q (p > q), we choose a sequence of natural numbers $\{a_1, a_2, \ldots, a_{n-1}, a_n\}$ such that the fractional expansion of q/p is $[a_1, a_2, \ldots, a_{n-1}, a_n, 1]$ and define the word w(q/p) as follow:

$$w(q/p) := \left\{ \begin{array}{ll} L^{a_1} R^{a_2} L^{a_3} \cdots L^{a_{n-2}} R^{a_{n-1}} L^{a_n} & (n : odd) \\ L^{a_1} R^{a_2} L^{a_3} \cdots R^{a_{n-2}} L^{a_{n-1}} R^{a_n} & (n : even) \end{array} \right..$$

Then, we get the following relation in $\pi_1(\partial T_{w(q/p)})$:

$$[z_{w(q/p)}] = p[l_{w(q/p)}] + q[m_{w(q/p)}],$$

where $l_{w(q/p)}$ and $m_{w(q/p)}$ are defined in Proposition 5.6.

Proof. Recall the notation $D_{i,j}, D_{i,j}^*, D, D^*$ in Lemma 3.2. By Proposition 2.9(c), we have the following relation in $\pi_1(\partial T_{w(q/p)})$:

$$[z_{w(q/p)}] = [y_{w(q/p)}] - [x_{w(q/p)}].$$

(a) The case n is odd

By equations (6) in Lemma 3.2, we have $DX_{\mu} - D^*X_{\lambda} = 1$ and $-DY_{\mu} + D^*Y_{\lambda} = -1$. For convenience, we denote w(q/p) by w in calculation. According to Proposition 5.6, we get the following relation in $\pi_1(\partial T_w)$:

$$[z_w] = [y_w] - [x_w]$$

$$= (DX_{\mu} - D^*X_{\lambda})[y_w] + (-DY_{\mu} + D^*Y_{\lambda})[x_w]$$

$$= D(-Y_{\mu}[x_w] + X_{\mu}[y_w]) + D^*(Y_{\lambda}[x_w] - X_{\lambda}[y_w])$$

$$= D(-D^*_{n+2,n+2}[x_w] + -D^*_{n+1,n+2}[y_w])$$

$$+ D^*(D_{n+1,n+1}[x_w] + -D_{n,n+1}[y_w])$$

$$= D[l_w] + D^*[m_w].$$

(b) The case n is even

By Lemma 3.2 and Proposition 5.6, we get the following equation similar to the case (a).

$$[z_w] = D[l_w] + D^*[m_w].$$

According to the Lemma 3.3(b) and the definition of $\{a_1, a_2, \ldots, a_{n-1}, a_n\}$, we get

$$\frac{D^*}{D} = \frac{D(0, a_1, a_2, \dots, a_{n-1}, a_n, 1)}{D(a_1, a_2, \dots, a_{n-1}, a_n, 1)}$$

$$= [a_1, a_2, \dots, a_{n-1}, a_n, 1]$$

$$= q/p.$$

We also have $D(0, a_1, a_2, \ldots, a_{n-1}, a_n, 1)$ and $D(a_1, a_2, \ldots, a_{n-1}, a_n, 1)$ are positive and coprime by the Lemma 3.3(c),(d). Thus we get $D(0, a_1, a_2, \ldots, a_{n-1}, a_n, 1) = q$ and $D(a_1, a_2, \ldots, a_{n-1}, a_n, 1) = p$.

Notation 7.2 For a word w(q/p) defined in Proposition 7.1, $T_{w(q/p)}$ is called q/p type solid torus and denoted by T(q/p).

Now, we define b type solid torus for a non-zero integer b.

Definition 7.3 For an integer $b \neq 0$, we define the word w(b) as follows:

$$LR^{b-1}\bar{L}\ (b>0);$$
 $L\bar{R}^{-b+1}\bar{L}\ (b<0).$

For the solid torus $T_{w(b)}$, two loops $x_{w(b)} := \alpha_{w(b)}\beta_{w(b)}$ and $y_{w(b)} := \beta_{w(b)}\gamma_{w(b)}$ are embedded in $\partial T_{w(b)}$. Recall that any loop embedded in $\partial T_{w(b)}$ is represented uniquely by $c_0[x_{w(b)}] + c_1[y_{w(b)}]$ ($c_0, c_1 \in \mathbb{Z}$), see Remark 2.10.

Definition 7.4 We define two loops $m_{w(b)}$ and $l_{w(b)}$ embedded in $\partial T_{w(b)}$ represented by the element in $\pi_1(\partial T_{w(b)})$:

$$[m_{w(b)}] := (1-b)[x_{w(b)}] + b[y_{w(b)}]; [l_{w(b)}] := (b-2)[x_{w(b)}] + (1-b)[y_{w(b)}].$$

Proposition 7.5 1. $[m_{w(b)}]$ is meridian of $T_{w(b)}$, that is, $[m_{w(b)}] = 0$ in $\pi_1(T_{w(b)})$;

2. $[l_{w(b)}]$ is longitude of $T_{w(b)}$, that is, $[l_{w(b)}] \neq 0$ in $\pi_1(T_{w(b)})$ and $m_{w(b)}$ and $l_{w(b)}$ intersects at one point.

Proof.

(a) The case b > 0

By Proposition 5.4, we get

$$\begin{pmatrix}
\begin{bmatrix} x_{w(b)} \\ y_{w(b)} \end{bmatrix}
\end{pmatrix} = \begin{pmatrix}
\begin{bmatrix} x_{\phi} \\ y_{\phi} \end{bmatrix}
\end{pmatrix} U_L U_R^{b-1} U_{\bar{L}}$$

$$= \begin{pmatrix}
\begin{bmatrix} l \\ m \end{bmatrix}
\end{pmatrix} U_0 U_L U_R^{b-1} U_{\bar{L}}$$

$$= \begin{pmatrix}
\begin{bmatrix} l \\ m \end{bmatrix}
\end{pmatrix} \begin{pmatrix}
-b & -b+1 & 1 \\ -b+1 & -b+2 & 1
\end{pmatrix},$$

where U_0 , U_L , U_R , $U_{\bar{L}}$ are defined in Lemma 3.2. Thus, we have the following relation in $\pi_1(T_{w(b)})$.

$$\begin{cases}
[x_{w(b)}] &= (-b)[l] + (-b+1)[m] \\
[y_{w(b)}] &= (-b+1)[l] + (-b+2)[m]
\end{cases}$$

$$\leftrightarrow \begin{cases}
[m] &= (1-b)[x_{w(b)}] + b[y_{w(b)}] \\
[l] &= (b-2)[x_{w(b)}] + (1-b)[y_{w(b)}]
\end{cases}.$$

And we have [m] = 0 in $\pi_1(T_{w(b)})$ and $[l] \neq 0$ in $\pi_1(T_{w(b)})$. Thus, two loops $m_{w(b)}$ and $l_{w(b)}$ embedded in $\partial T_{w(b)}$ are meridian and longitude respectively.

(b) The case b < 0

The proof is similar to the case (a).

Recall the loop $z_{w(L,R)}$ embedded in $\partial T_{w(b)}$ is defined as the loop $\gamma_{w(L,R)}\alpha^{-1}_{w(L,R)}$.

Proposition 7.6 For any integer $b \neq 0$, we get the following relation in $\pi_1(\partial T_{w(b)})$:

$$[z_{w(b)}] = [l_{w(b)}] + [m_{w(b)}].$$

Proof. By Proposition 2.9, we get the following relation in $\pi_1(\partial T_{w(b)})$:

$$[z_{w(b)}] = [y_{w(b)}] - [x_{w(b)}]$$

$$= (-b+1)[l_{w(b)}] + (-b+2)[m_{w(b)}]$$

$$- ((-b)[l_{w(b)}] + (-b+1)[m_{w(b)}])$$

$$= [l_{w(b)}] + [m_{w(b)}].$$

Definition 7.7 For a word w(b) defined in Definition 7.3, $T_{w(b)}$ is called b type solid torus and denoted by T(b).

8 Seifert manifold

In this section, we define the identification maps f_{G_n} and f_* on ∂B^3 such that B^3/f_{G_n} and B^3/f_* are homeomorphic to $\left(S^2-\left(\coprod_{i=1}^{n+2}Int\left(D_i^2\right)\right)\right)\times S^1$ and $\left(S^1\times S^1-D^2\right)\times S^1$ respectively. And we show that any Seifert manifold whose base space is orientable can be obtained by gluing $T(q_i/p_i), T(b), B^3/f_{G_n}$ and B^3/f_* .

We use the notation H_i ($i \in \mathbb{N}$) for the diagram shown in Figure 23. Assume that H_i is embedded in ∂B^3 . Let f_{H_i} be an identification map on ∂B^3 associated with the diagram H_i , that is, the edges which have same oriented label are identified and the identification of vertices and face are induced by the identification of edges.

First we consider the manifold B^3/f_{H_i} , denoted by M_{H_i} .

Proposition 8.1 M_{H_i} is homeomorphic to $\left(S^2 - \left(\coprod_{i=1}^3 Int(D_i^2)\right)\right) \times S^1$.

Proof. This proof is similar to [10]. Without loss of generality, we assume the following conditions:

- 1. $B^3 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 \le 1\};$
- 2. $\partial B^3 \cap \{z=0\}$ is the bold line drown shown in Figure 24.
- 3. The projection of the edge X_1 embedded in $\partial B^3 \cap \{z > 0\}$ to the surface z = 0 and of the edge X_1 embedded in $\partial B^3 \cap \{z < 0\}$ to the surface z = 0 are congruent. Similarly, the edges X_2, X_3, Y_j and Z_j are satisfies the same condition (j = 1, 2, 3).

Suppose the flow generated by the vector field $\partial/\partial z$ on B^3 . A point a in region A shown in Figure 25 is mapped by the identification map f_{H_i} to a_1 in the region A_1 . And it is moved by the flow $\partial/\partial z$ and arrives at a_2 in A_2 . After that, it is mapped to a_3 in A_3 by f_{H_i} and it turns back by a flow to the same point a in A. Also a point in region ∂A turns back to the same point in ∂A by f_{H_i} and the flow $\partial/\partial z$. Any point in M_{H_i} turns back in the disc $A \cup B \cup C \cup D \cup E$ shown in Figure 25. Thus, the base space of M_{H_i} is H'_i/f_{H_i} , where H'_i is shown in Figure 26. Since H'_i/f_{H_i} is homeomorphic to $S^2 - \left(\coprod_{i=1}^3 Int(D_i^2) \right)$,

Figure 23: Diagram H_i

the manifold M_{H_i} is homeomorphic to $\left(S^2 - \left(\coprod_{i=1}^3 Int(D_i^2)\right)\right) \times S^1$.

By the proof of Proposition 8.1, a fiber structure of M_{H_i} by the vector field $\partial/\partial z$. The loop $\{(x,y,z)\mid x=y=0,\ -1\leq z\leq 1\}/f_{H_i}\ (\cong S^1)$ is a fiber of M_{H_i} . It is isotopic to $\gamma_k\alpha_k^{-1}\ (k=i,i+1,i+2)$.

Now we define the diagram G_n inductively by using H_i .

Definition 8.2 The diagram G_1 is defined as H_1 . Suppose the diagram G_{n-1} is defined. Then, G_n is defined the following two steps.

1. Identify the circle $\alpha_{n+1} \beta_{n+1} \gamma_{n+1} \alpha_{n+1}^{-1} \beta_{n+1}^{-1} \gamma_{n+1}^{-1}$ of G_{n-1} and the circle $\alpha_n \beta_n \gamma_n \alpha_n^{-1} \beta_n^{-1} \gamma_n^{-1}$ of H_n such that the directed edges α_{n+1} , β_{n+1} , γ_{n+1} and α_n , β_n , γ_n are identified respectively.

Figure 24: $\partial B^3 \cap \{z=0\}$

2. Delete the edge $\alpha_{n+1} \beta_{n+1} \gamma_{n+1}$ of G_{n-1} and $\alpha_n \beta_n \gamma_n$ of H_n .

Assume that G_n is embedded in ∂B^3 . Let f_{G_n} be an identification map on ∂B^3 . induced from the identifying the directed labeled edges of G_n . We consider the manifold B^3/f_{G_n} , denoted by M_{G_n} .

Proposition 8.3 The manifold M_{G_n} is homeomorphic to $\left(S^2 - \left(\coprod_{i=1}^{n+2} Int\left(D_i^2\right)\right)\right) \times S^1$.

Proof. The proof is similar to Proposition 8.1. Suppose the flow $\partial/\partial z$. Contracting a flow to a point, we get the disc G'_n which is homeomorphic to $S^2 - \left(\coprod_{i=1}^{n+2} Int(D_i^2)\right)$. Thus, M_{G_n} is homeomorphic to $\left(S^2 - \left(\coprod_{i=1}^{n+2} Int(D_i^2)\right)\right) \times S^1$.

By the proof of Proposition 8.1, a fiber structure of M_{G_n} is $\partial/\partial z$. Thus, a loop $\gamma_i \alpha_i^{-1}$ is a fiber of M_{G_n} , where $1 \leq i \leq n+2$.

Now, we consider the manifold $(S^1 \times S^1 - D^2) \times S^1$. The diagram shown in Figure 27 is called *i-diagram and denoted by *i. Assume that *i-diagram is embedded in ∂B^3 . Let f_{*i} be an identification map on ∂B^3 associated with the *-diagram. We consider the manifold B^3/f_{*i} , denoted by M_{*i} .

Proposition 8.4 M_{*i} is homeomorphic to $(S^1 \times S^1 - D^2) \times S^1$.

Figure 25: Region A,B,C,D and E

Proof. The proof is similar to Proposition 8.1. Embeds *i-diagram in the boundary of the unit ball and suppose the flow $\partial/\partial z$. Contracting a flow to a point, we get the surface $*_i'$ which is homeomorphic to $S^1 \times S^1 - D^2$. Thus, M_{*i} is homeomorphic to $(S^1 \times S^1 - D^2) \times S^1$.

Now, we consider a Seifert fibered space $S(F_g, b; (\alpha_1, \beta_1), \ldots, (\alpha_{n+1}, \beta_{n+1}))$, where F_g is orientable closed surface with g genus. The boundary of the manifold $M_{G_{n+g}}$ is $\coprod_{i=1}^{n+g+2} D_i/f_{G_{n+g}}$, where D_i is a disc shown in Figure 21. Thus, $\partial M_{G_{n+g}} = \coprod_{i=1}^{n+g+2} T_i$, where $T_i := D_i/f_{G_{n+g}} \cong S^1 \times S^1$. And θ_i -curve is embedded in T_i such that $T_i \setminus (\alpha_i \cup \beta_i \cup \gamma_i)$ is homeomorphic to an open disc. So, there exists a homeomorphism $\varphi_i : \partial T(q_i/p_i) \to T_i$ $(1 \le i \le n+1)$ and $\varphi_{n+2} : \partial T(b) \to T_{n+2}$ and $\varphi_i : \partial M_{*i} \to T_i \ (n+3 \le i \le n+g+2)$ by Lemma 3.4.

We use the notation $M_{G_{n+g}} \cup T(q_i/p_i) \cup T(b) \cup M_{*i}$ for the manifold obtained by gluing $M_{G_{n+g}}$ and $\coprod_{i=1}^{n+1} T(q_i/p_i)$ and T(b) and $\coprod_{i=n+3}^{n+g+2} M_{*i}$ by φ_i .

Theorem 8.5 The manifold $M_{G_{n+g}} \cup T(q_i/p_i) \cup T(b) \cup M_{*i}$ is homeomorphic to the Seifert manifold $S(F_g, b; (p_1, r_1), \ldots, (p_{n+1}, r_{n+1}))$, where r_i is decided such that $q_i/p_i = [a_1, a_2, \ldots, a_{k-1}, a_k, 1]$ and

$$r_i = \left\{ \begin{array}{ll} -D_{k,k+1}(a_1, a_2, \dots, a_{k-1}, a_k, 1) & (k : odd) \\ D_{k+1,k+1}(a_1, a_2, \dots, a_{k-1}, a_k 1) & (k : even) \end{array} \right.,$$

where $D_{i,j}(a_1, a_2, \ldots, a_{n-1}, a_n)$ in Definition 3.1

Figure 26: Base space H_i

Proof.

1. The case $1 \le i \le n+1$

For convenience, we denote $w(q_i/p_i)$ by w.

(a) The case k is odd of q_i/p_i . By Proposition 5.6, the meridian of $T(q_i/p_i)$ satisfies the following conditions in $\pi_1(\partial T(q_i/p_i))$.

$$[m_w] = D_{n+1, n+1} [x_w] - D_{n, n+1} [y_w];$$

$$[l_w] = -D_{n+2, n+2}^* [x_w] + D_{n+1, n+2}^* [y_w].$$

By definition of φ_i , we get $\varphi_i^{-1}(\gamma_i \alpha_i^{-1}) = \gamma \alpha^{-1}$. Since $\gamma_i \alpha_i^{-1}$ is a fiber, we regard $\gamma \alpha^{-1}$ as a fiber of $T(q_i/p_i)$. Let $\varphi_i^{\#}: \pi_1(\partial T(q_i/p_i)) \to \pi_1(T_i)$ be a homomorphism induced by homeomorphism φ_i . By Proposition 7.1, we get the following equation in $\pi_1(\partial T(q_i/p_i))$.

$$[\varphi_{i}^{-1}(\gamma_{i}\alpha_{i}^{-1})] = \varphi_{i}^{\#^{-1}}([\gamma_{i}\alpha_{i}^{-1}])$$

$$= [\gamma \alpha^{-1}]$$

$$= [z_{w}]$$

$$= p_{i}[l_{w}] + q_{i}[m_{w}].$$

This means that the core of $T(q_i/p_i)$ is (p_i, q_i) type singular fiber. And we

Figure 27: Diagram *i

have the following equation in $\pi_1(T_i)$:

$$\begin{split} [\varphi_{i}(m_{w})] &= \varphi_{i}^{\#}([m_{w}]) \\ &= \varphi_{i}^{\#}(D_{k+1,k+1}[x_{w}] - D_{k,k+1}[y_{w}]) \\ &= D_{k+1,k+1}\varphi_{i}^{\#}([x_{w}]) - D_{k,k+1}\varphi_{i}^{\#}([y_{w}]) \\ &= D_{k+1,k+1}[\alpha_{i}\beta_{i}] - D_{k,k+1}[\beta_{i}\gamma_{i}] \\ &= D_{k+1,k+1}[\alpha_{i}\beta_{i}] - D_{k,k+1}[\beta_{i}\alpha_{i}\alpha_{i}^{-1}\gamma_{i}] \\ &= D_{k+1,k+1}[\alpha_{i}\beta_{i}] - D_{k,k+1}([\beta_{i}\alpha_{i}] + [\gamma_{i}\alpha_{i}^{-1}]) \\ &= (D_{k+1,k+1} - D_{k,k+1})[\alpha_{i}\beta_{i}] - D_{k,k+1}[\gamma_{i}\alpha_{i}^{-1}] \end{split}$$

Two loops $\alpha_i \beta_i$ and $\gamma_i \alpha_i^{-1}$ are embedded in T_i such that $\alpha_i \beta_i = T_i \cap H_i'$ and $\alpha_i \beta_i$ intersects $\gamma_i \alpha_i^{-1}$ at a point. By Lemma 3.3(i), we get $D_{k+1,k+1} - D_{k,k+1} = p_i$. So the fiber type is $(p_i, -D_{k,k+1})$.

(b) The case k is even

The proof is similar to the case (a). By Proposition 5.6, we have the following conditions in $\pi_1(q_i/p_i)$.

$$[\varphi_i^{-1}(\gamma_i \alpha_i^{-1})] = p_i[l_w] + q_i[m_w].$$

This means that the core of $T(q_i/p_i)$ is (p_i,q_i) type singular fiber. Also, we get

the following conditions in $\pi_1(T_i)$.

$$\begin{aligned} [\varphi_{i}(m_{w})] &= \varphi_{i}^{\#}(-D_{k,k+1}[x_{w}] + D_{k+1,k+1}[y_{w}]) \\ &= -D_{k,k+1}\varphi_{i}^{\#}([x_{w}]) + D_{k+1,k+1}\varphi_{i}^{\#}([y_{w}]) \\ &= (D_{k+1,k+1} - D_{k,k+1})[\alpha_{i}\beta_{i}] + D_{k+1,k+1}[\gamma_{i}\alpha_{i}^{-1}] \\ &= p_{i}[\alpha_{i}\beta_{i}] + D_{k+1,k+1}[\gamma_{i}\alpha_{i}^{-1}]. \end{aligned}$$

Thus, the fiber type is $(p_i, D_{k+1,k+1})$.

2. The case i = n + 2

The proof is similar to the case 1. We get the following relation in $\pi_1(\partial T(b))$.

$$[m_{w(b)}] = (1-b)[x_{w(b)}] + b[y_{w(b)}]; [l_{w(b)}] = (b-2)[x_{w(b)}] + (1-b)[y_{w(b)}].$$

Since $\varphi_{n+2}^{-1}(\gamma_{n+2}\alpha_{n+2}^{-1}) = \gamma \alpha^{-1}$, the loop $\gamma \alpha^{-1}$ is a fiber of T(b). By Proposition 7.5, we get the following equation in $\pi_1(\partial T(b))$.

$$[\varphi_{n+2}^{-1}(\gamma_{n+2}\alpha_{n+2}^{-1})] = \varphi_{n+2}^{\#^{-1}}([\gamma_{n+2}\alpha_{n+2}^{-1}])$$

$$= [\gamma \alpha^{-1}]$$

$$= [z_{w(b)}]$$

$$= [l_{w(b)}] + [m_{w(b)}].$$

By Proposition 7.5, we get the following equation in $\pi_1(T_{n+2})$:

$$\begin{aligned} [\varphi_{n+2}(m_{w(b)})] &= \varphi_{n+2}^{\#}([m_{w(b)}]) \\ &= \varphi_{n+2}^{\#}((1-b)[x_{w(b)}] + b[y_{w(b)}]) \\ &= (1-b)\varphi_{n+2}^{\#}([x_{w(b)}]) + b\varphi_{n+2}^{\#}([y_{w(b)}]) \\ &= (1-b)[\alpha_{n+2}\beta_{n+2}] + b[\beta_{n+2}\gamma_{n+2}] \\ &= (1-b)[\alpha_{n+2}\beta_{n+2}] + b[\beta_{n+2}\alpha_{n+2}\alpha_{n+2}^{-1}\gamma_{n+2}] \\ &= (1-b)[\alpha_{n+2}\beta_{n+2}] + b[\beta_{n+2}\alpha_{n+2}] + [\alpha_{n+2}^{-1}\gamma_{n+2}]) \\ &= [\alpha_{n+2}\beta_{n+2}] + b[\gamma_{n+2}\alpha_{n+2}^{-1}]. \end{aligned}$$

This means that the core of T(b) is the fiber corresponding to the obstruction class b.

3. The case $n + 3 \le i \le n + g + 2$

By the definition of φ_i and Proposition 8.4, the base space of M_{*i} is $S^1 \times S^1 - D^2$. Thus, the base space of $M_{G_{n+g}} \cup T(q_i/p_i) \cup T(b) \cup M_{*i}$ has g genus.

9 Singular triangulation of Seifert manifold

Definition 9.1 For $i=1,2,\ldots,n+1$, let (p_i,q_i) be pairs of coprime natural numbers such that $p_i>q_i$ and b an integer such that $b\neq 0$ and g be a natural number. Then, the diagram G_{n+g} (*1, *2,...,*g, b, $q_1/p_1, q_2/p_2, \ldots, q_{n+1}/p_{n+1}$) is defined the following six steps.

- 1. Identify the circle $\alpha_i \beta_i \gamma_i \alpha_i^{-1} \beta_i^{-1} \gamma_i^{-1}$ of the G_{n+g} and the circle $\alpha \beta \gamma \alpha^{-1} \beta^{-1} \gamma^{-1}$ of $w(p_i/q_i)$ diagram such that the directed edges α_i , β_i , γ_i and α , β , γ are identified respectively, where $i = 1, 2, \ldots, n+1$
- 2. Delete the edge α_i , β_i , γ_i of G_{n+g} and α , β , γ of an $w(p_i/q_i)$ diagram, where $i = 1, 2, \ldots, n+1$
- 3. Identify the circle $\alpha_{n+2} \beta_{n+2} \gamma_{n+2} \alpha_{n+2}^{-1} \beta_{n+2}^{-1} \gamma_{n+2}^{-1}$ of the G_{n+g} and the circle $\alpha \beta \gamma \alpha^{-1} \beta^{-1} \gamma^{-1}$ of w(b) diagram such that the directed edges α_{n+2} , β_{n+2} , γ_{n+2} and α , β , γ are identified respectively.
- 4. Delete the edge α_{n+2} , β_{n+2} , $\gamma_{n+2}i$ of G_{n+g} and α , β , γ of an w(b) diagram.
- 5. Identify the circle $\alpha_i \beta_i \gamma_i \alpha_i^{-1} \beta_i^{-1} \gamma_i^{-1}$ of the G_{n+g} and the circle $\alpha_i \beta_i \gamma_i \alpha_i^{-1} \beta_i^{-1} \gamma_i^{-1}$ of *i diagram such that the directed edges $\alpha_i, \beta_i, \gamma_i$ and $\alpha_i, \beta_i, \gamma_i$ are identified respectively, where $i = n + 2, n + 3, \ldots, n + g + 2$.
- 6. Delete the edge α_i , β_i , γ_i of G_{n+q} and α_i , β_i , γ_i of an *i diagram,

where two words $w(p_i/q_i)$ and w(b) are defined in Proposition 7.1 and Definition 7.3.

Remark 9.2 The diagram G_{n+g} (*1, *2,...,*g, b, q_1/p_1 , q_2/p_2 ,..., q_{n+1}/p_{n+1}) is DS-diagram, where DS-diagram is defined in [4]. The DS-diagram of lens space is shown in [11] and [12].

Assume that $G := G_{n+g}$ ($*_1, *_2, \ldots, *_g, b, q_1/p_1, q_2/p_2, \ldots, q_{n+1}/p_{n+1}$) is embedded in ∂B^3 . Let f_G be an identification map induced from the identifying the directed labeled edges of G. We consider B^3/f_G , which is denoted by $M\left(G_{n+g}\left(g_*, b, q_1/p_1, q_2/p_2, \ldots, q_{n+1}/p_{n+1}\right)\right)$ Since G is DS-diagram, $(\partial B^3)/f_G$ is a special spine for the manifold B^3/f_G , see [4]. Thus, the dual complex of $(\partial B^3)/f_G$ is the singular triangulation of the manifold $M\left(G_{n+g}\left(g_*, b, q_1/p_1, q_2/p_2, \ldots, q_{n+1}/p_{n+1}\right)\right)$.

Proposition 9.3 The manifold $M\left(G_{n+g}\left(g_{*},b,q_{1}/p_{1},q_{2}/p_{2},\ldots,q_{n+1}/p_{n+1}\right)\right)$ is homeomorphic to Seifert manifold $S\left(F_{g},b;(p_{1},r_{1}),\ldots,(p_{n+1},r_{n+1})\right)$, where r_{i} is defined in Theorem 8.5

Proof. The proof is similar to Lemma 5.3. By definition of gluing map φ_i , the boundary of $T(q_i/p_i)$ (or $T(b), M_{*i}$) and torus T_i which are the boundary component of $M_{G_{n+g}}$ are identified such that $\varphi_i(\alpha_i) = \alpha_i$, $\varphi_i(\beta_i) = \beta_i$, $\varphi_i(\gamma_i) = \gamma_i$. Thus, the manifold $M\left(G_{n+g}\left(g_*, b, q_1/p_1, q_2/p_2, \ldots, q_{n+1}/p_{n+1}\right)\right)$ is homeomorphic to the manifold $M_{G_{n+g}} \cup$

 $T(q_i/p_i) \cup T(b) \cup M_{*i}$. By the Theorem 8.5, the manifold $M_{G_{n+g}} \cup T(q_i/p_i) \cup T(b) \cup M_{*i}$ is homeomorphic to Seifert manifold $S(F_g, b; (p_1, r_1), \dots, (p_{n+1}, r_{n+1}))$.

At last, we get the following theorem by Theorem 8.5, Remark 9.2 and Proposition 9.3.

Theorem 9.4 Let $G := G_{n+g}(g_*, b, q_1/p_1, q_2/p_2, \ldots, q_{n+1}/p_{n+1})$ be a DS-diagram of Seifert manifold of $M := B^3/f_G \cong S(F_g, b; (\alpha_1, \beta_1), (\alpha_2, \beta_2), \cdots, (\alpha_{n+1}, \beta_{n+1}))$. Then, a Singular triangulation of Seifert manifold M is dual complex of $(\partial B^3)/f_G$.

Example

- 1. Quaternionic space $\cong M(G_1(1/2, 1/2, 1/2))$
- 2. Brieskorn manifold $\Sigma(2,3,5) \cong S\left(S^2, -1; (2,1), (3,1), (5,1)\right) \cong M\left(G_2(-1, 1/2, 1/3, 1/5)\right)$
- 3. $S(F_2, -2; (5,3), (3,1), (2,1)) \cong M(G_4(2_*, -2, 2/5, 1/3, 1/2))$

References

- [1] Sergei Matveev, Algorithmic Topology and Classification of 3-Manifolds, Springer
- [2] Jose M.Montesinos, Classical Tessellations and Three-manifolds, Springer
- [3] H. Ikeda, Acyclic fake surfaces, Topology 10 (1971) p.9-36
- [4] H. Ikeda, Y. Inoue, Invitation to DS-diagrams, Kobe J Math. 2 (1985) p.169-186
- [5] H. Ikeda, DS-diagrams with E-cycle, Kobe J Math. 10 (1971) p.9-36
- [6] I. Ishii, Flows and spines, Tokyo J.Math., 9 (1986) p.505-525
- [7] T. Taniguchi, Turaev-Viro invariant of Seifert manifolds, preprint.
- [8] M. Endoh, I. Ishii, A new complexity for 3-manifolds, preprint.
- [9] T. Takagi, Syotou-seisuuronn-kougi (Elementary number theory), in Japanese.
- [10] I. Ishii, Flow-spine and Seifert fibred structure of 3-manifolds, Tokyo J. Math., 11 (1988) p.95-104
- [11] I. Ishii, Combinatorial construction of a non-singular flow on a 3-manifold, Kobe J.Math., 3 (1986) p.201-208
- [12] K. Yokoyama, On DS-diagrams of lens spaces, Topology and computer science, Edited by S.Suzuki, Kinokuniya Company Ltd., (1987) p.171-192