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81. Singular loops in a 2-cell

We denote by @X and °X, respectively, the boundary and the
interior of a manifold X. For a subcomplex P in a complex M,
by N(P;M) we denote a regular neighborhood of P in M, that
is, we construct the second derived of M and take the closed

star of P, see [H].[RS].

We shall say that a submanifold X of a manifold Y is proper
iff XNnay = aX.
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By R*, D® and S™ ! we shall denote the Euclidean n-space,
the standard n-cell and the standard (n-1) -sphere & D®, respec-
tively.

1.1.Definition. (1) Let f : D!= M and g : S'= M be non-
degenerate continuous maps into a manifold M. Then, the images
£(D1)=A and g(S')=J will be called a singular-arc (or simply
an arc) and a singular-loop (or simply a loop), respectively. In
particular, A and J will be called a simple arc and a simple
loop, respectively, if f and g are embeddings. The boundary
of an arc f(D!)=A is the image f(&D?!) of the boundary &D?,
and we denote it by & *A.

(2) An arc A in a manifold M is said to be proper iff
ANGF=d*A. A loop J in a manifold M is said to be proper
iff JC°F.

(3) Let B=ByU--UBn. be a finite union of proper arcs and
proper loops in a 2-manifold F2. A point p in B is said to
be a singular-point of maltiplicity k iff the number of the
preimage of p is k with k2.

We shall say that B is normal, iff

(i) B has only a finite number of singular-points of multi-
plicity 2, and

(ii) at every singular point of B, B crosses transversally.

1.2. Lemma. Let J; = J11UUJin¢y and J2 = J21U = Uldon 2
be finite unions of proper loops in a simply connected 2-manifold
F2 such that J;NJ; = &J. Then, there exists j€{l,--.m(1)}
or ke€{l,-~,m(2)} so that Jis is contractible in F2 - J; or

Jox is contractible in F2 - J.
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Proof. We may assume that J1UJ2 is polygonal and normal.

Let R = {Ry,--,R:} be the set of regions of F2 - °N(J;:F?).
It will be noticed that RiU<-UR;DJs.

If there exist a loop, say J2x, of J2, and a simply connected
region, say Rn, of R with J2xCRn, then J2x is contractible
in RnCF2? - J;, and so the proof is complete.

So, we may assume that there exist some non-simply connected
regions, say Qi,°+,Qq, of R, so that Q;U--UQqDJ,. Let CiU
«UCs = dQ1U+U 304 be the disjoint union of simple loops on
F2, and let An be the 2-cell on F2 with & Axn = Cu (h=1, -,
s). We choose an innermost 2-cell, say Aj, in {A1,*,As}.
i.e. there is no other An in A;. Since A; is not belong
to R and Cy; = @A, is the one of the boundary curves &QqU
«+U @0Qq, it holds that Ai1NJ1#J, and since A; does not
contain any Qq,--,Qq and J,CQyU--UQq, it holds that A1NJ,
=(. Now, any Jiy of Ji; with Ji15;NA; # @ is contracti-
ble in A;CF? - J;, and so the proof is complete. [

By the same way as that of Lemma 1.2, we have the following :

1.3. Theorem. Let Jy = Jj1U++UJdiny be a finite union of
proper loops in a simply connected 2-manifold F2 for i=1,--, u,
such that JiNJy = J for i#h. Then, there exist j€({l,-,u}
and k€{l,--.m(j)} so that J;x is contractible in F2 - ingg.

Proof. We prove this by induction on the number u of the
classes Ji. The case of u=1 is trivial, and the case wu= 2
is Lemma 1.2. So, we assume that u =3 and Theorem is true for

uw-1. Ve may assume that every J; is polygonal and normal.
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Let R = {Ry,~,R:} be the set of regions of F2 - °N{(J;:F?).
It will be noted that RiU--UR,DJU--Udpu.

If there exist a loop, say Jsx, of J; and a simply connected
region, say Rn, of R with J;xCRn, then Ji' = JiNRy (i=2, -,
u) is a finite union of loops in the simply connected region Ry
satisfying the conditions of Theorem. By induction hypothesis,
we have a loop, say Jsx, of J,"CJ; so that Jyx is contrac-

tible in Rn - igl.j'h' C F2 - ing:. and so the proof is

complete.

S0, we may assume that there exist some non-simply connected
regions, say Qi,,Qq of R, so that QU UQqyDJU--UJu.
Now, the proof of this case, which is omitted here, is the same

as that of Lemma 1.2. ([

In general, we have the following :

1.4. Theorem. Let A; = Aj1U+~UAinc1) be a finite union of
proper arcs in a simply connected 2-manifold F2 for i=1,+,u,
and let J;y = Ji1U-UJdin) be a finite union of proper loops
in F2, such that (A;UJi)N (AnUdn)= & for i#h. Then, there
exist j€{l,~,u} and ke€{l,-,m(j)} so that Jsx is cont-
ractible in F2 - igj(A;UJ;).

Proof. We may assume that every A;UJ; is polygonal and normal.
Since every region of F2 - °N(A;;F2) is simply connected, the
proof of Theorem is similar to that of Theorem 1.3, and so it is

omitted here. [
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§2. Singular spheres in a 3-cell

In this section, we will discuss singular 2-spheres in a 3-cell
and prove similar theorems to these in the previous section.

First let us explain several well-known facts to be used in the
sequel.

If a compact 3-manifold M is embeddable in the 3-sphere S3,
then there is a 1-complex G in S® such that the exterior
S3 - °N(G:S3) is homeomorphic to M by Fox[F].

A l-complex G in S3® is said to be splittable, iff there
exists a 2-sphere SCS2 - G, such that both components of S3 - S
contain points of G. If a 1-complex GCS3® is not splittable,
then the exterior S3 - °N(G:S®) is aspherical, i.e. the second
homotopy group 72 (S3 - °N(G;S%)) = {0}, by Papakyriakopoulos[P].

In particular, if GCS® is a connected 1-complex, then S3 -
°N(G;S®) is aspherical.

We will call a compact 3-manifold M an aspherical region iff
M is embeddable in S® and aspherical.

It holds the following :

2.1. Proposition. (1) If a compact 3-manifold M is embeddable
in S® and &M is connected, then M is an aspherical region.

(2) Let M be an aspherical region with connected boundary &M
and let FC°M be a closed connected 2-manifold. Then, there

exists an aspherical region R in M with AR =F. O

The following corresponds to Definition 1.1.
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2.2. Definition. (1) Let f : F2— M be a non-degenerate con-
tinuous map of compact 2-manifold F? into a manifold M. Then,
the image f(F2) = F will be called a singular-surface. In par-
ticular, singular-surfaces f(D?) =D and g(S?) =S will be
called a singular-disk and a singular-sphere, respectively.

The boundary of a singular-surface f(F?) = F is the image
£(3F2), and we denote it by & °*F.

(2) A singular-surface F in a manifold M is said to be
proper iff FN aM = G*F.

(3) Let F be a proper singular-surface in a 3-manifold M. A
point p in F is a singular-point of multiplicity k iff the
number of the preimage of p is k with k=2.

We shall say that F is normal iff

(i) F has only singular-points of multiplicity 2 and 3,

(ii) the set of singular-points of multiplicity 2 is a finite
number of polygonal curves, that is, singular-arcs and singular-
loops, which will be called double-lines,

(iii) the set of singular-points of multiplicity 3 consists of
a finite number of points which are intersection points of the
double-lines, which will be called triple-points, and

(iv) at every singular-point of multiplicity 2, F crosses

transversally.

In fact., every singular-point p of F has one of the neigh-
borhood described in Figure 1, and it is well known that every

singular-surface may be & -approximated by such a normal one.
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regular point double point

triple point branch point

Figure 1

2.3. Lemma. Let S; = S13U-+USinc1y and Sz = S21U USom (2)
be finite unions of proper singular-spheres in an aspherical
region M with connected boundary &M such that S;NS, = &.
Then, there exists j€{l,--,m(1)} or ke€{l,--.m(2)} so that
S15 is contractible in M - S, or Sax is contractible in

M- S:.
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Proof. We may assume.that S{US2 is normal. The proof of this
Lemma is similar to that of Lemma 1.2.

Let R = {Ry,*-.Ry} be the set of regions of M - °N(S;:M). It
will be noted that R;U--UR:DS,.

If there exist a singular-sphere, say Szx, of S2 and an
aspherical region, say Rn, of R with S2xCRn, then Sox is
contractible in RnCM - 84, and completing the proof.

So, we may assume that there exist some spherical regions, say
Q4,°+,Qq, in R, so that Q;U--UQqDS,. Let FiU+-UF; = a0y
U+-U dQ, be the disjoint union of closed connected 2-manifolds,
and let Mn be the aspherical region in M with My = Fn for
h=1,--,s, see Proposition 2.1(2). We choose an innermost region,
say Mi, in these aspherical regions, that is, there are no other
Mn in M;. Then, by the same way as the proof of Lemma 1.2, it
is easily checked that M;NS1#J and MiNS=J. Now, any
Sis of S; with Si;NM;#@J is contractible in M;CM - S,
and completing the proof. []

The following theorems correspond to Theorems 1.3 and 1.4,

respectively.

2.4. Theorem. Let Si = Si1U-+USin¢1» be a finite union of
proper singular-spheres in an aspherical region M with connected
boundary @M for i=1,+,u, such that SiNSy =& for i#h.
Then, there exist j€{l,--,u} and ke€{l,--,m(j)} so that Sk

is contractible in M - i¥j8h

Proof. The proof is similar to that of Lemma 2.3, and is word

for word that of Theorem 1.3. O

_8..
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2.5. Theorem. Let M be an aspherical region with connected
boundary M. Let Di = DygU-+UDinc) and Sg = SiqUUSimar)
be finite unions of proper singular-disks and proper singular-
spheres in M, respectively, for i=1,+-,u, such that (D1US;)N
(DhUSy) = & for i#h. Then, there exist j€{l,--,u} and
k€ {1,--,m(j)}, so that S,x is contractible in M -igj(DgUS;).

Proof. We may assume that every DiUS; is normal. Since
every region R of M - °N(D;:M) is an aspherical region, the
proof of this Theorem is similar to that of Theorem 2.4, and is

word for word that of Theorem 1.4. (O

§3. Singular cut-and-pastes

3.1. Definition. Let M3 be a 3-manifold, and let E2 bea
2-manifold in ©°M3. Let f : F2— M® be a non-degenerate conti-
nuous map of a compact 2-manifold F2? into M3 such that

(i) f£(F?) =F is a normal singular-surface,

(ii) F intersects with E? transversally, and

(iii) every triple-point and every branch point of F do not
lie on E2,

Then, the intersection FNE? consists of a finite number of
arcs and loops. Let J be a loop in FNE?, and let J* be the
preimage of J in F2; J* is a simple loop. We suppose that J*
is 2-sided on F2, and let F'2 be the 2-manifold obtained from
F2 by attaching a 2-handle along J*; F'* = F2Uh2.

Now, we suppose that J is contractible on E2. Then, we have
a non-degenerate continuous map, say g, of D? into E2CM3

such that g(8D2?) = J. Using the product structure N(EZ;M3) =

-9 -
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E2XxD?, we define a non-degenerate continuous map f' : F'2— M3
as follows :

' | F2 - h2(D2x&D!) = £]| F2 - h2(8D?2xD?),

' | h2(D2x §D?) = gx &DL.

We say that F = £ (F2) is obtained from F = £(F2) by a
cut-and-paste along JCE?, and we denote simply by F = F'.

It will be noticed that F NE2 = FNE2 - J and that F 2 = D2
[1S? (a disjoint union) provided that F2 = D2 and F 2 = S2[]§2
provided that F2 = §2.

3.2. Theorem. Let 0y = 011U U0in¢1)» be a trivial link in
the 3-sphere S3® (or the 3-space R3) for i=l,--, u, such that
0;U--UOu is also a trivial link. Let Dy = DygiU-UDincy
be a finite union of normal singular-disks in S* for i=1,--, u,
such that @*Dyy = 045 for i=1,-,p and j=1,--,n(i), and
DiNDy = & for i#h.

Let D*; = D*;;U--UD*1n1» be mutually disjoint 2-cells in
S3 (or R3) for i=1,--,m, such that &D*;s = 0;5 for i=l,-,n
and j=1,+-,n(i), and D*;ND*, = & for i#h.

We suppose that D;U--UDup intersects with D*;U--UD*u
transversally, and any triple-point and any branch-point of DU
«~UDu do not lie on D* U--UD*p.

Then, there exists a finite sequence of cut-and-pastes

D1U"' UDU. = D1 0 U’”UD)J, (0) Dl(l) U...UD“ (1) aap see

= Dy WU UDp O e = Dy WY YDy W
along (DU--UDu)N (D*;U-UD*p)CD* U--UD*u such that

(1) D™ = Dyy W UerUDincay P US4 ™ U USimcr ™, where

- 10 -
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D13 is a singular-disk with 8*Dis® = 0;5 and S15™ is a
singular-sphere, for i=1,+-,p: j=1,--,n(i): u=l, -, w; s=1,--,m(i),

2 YN =& for i#h, u=l,-,w, and

3) i NDP*, = J for i#h, and D’ ND* = (D4, U U
Dinciy ™) ND*; consists of a finite number of proper arcs in
D*,.

Proof. From our hypothesis, Di;ND*;x consists of proper loops
in D*ux provided that i#h, and D;yND*;x consists of proper
loops and proper arcs in D*;x for every 1i,j.k. Therefore, by
the induction on the number n = n(1)+-+n(p) of 2-cells in
D*;U--UD*u, it suffices to show that there exists a finite
sequence of cut-and-pastes of D;U--UDwn along proper loops

(DyU-UDu) ND*1;CD*;y so that Dy P U--UDu ‘¥ satisfies
the conditions (1), (2) and

(3) i ND*11 = and Dy ND*; = Dy W ND*y; for i=2,
«-,t and j=2,--,n(1), and D;:‘*’ND*;; consists of a finite
number of proper arcs in D¥;; and Dy’ ND*i5 = Dy Y ND*y,
for j=2,--,n(1).

We consider D;U--UDu and D*;y. Let A; = A{1U-*UlAta(n
be the collection of proper arcs in D;ND*;; on D*;,, and let
A; = J be the collection of proper arcs in D;ND*y; for i=2,
.. Let Jy = Ji1UUJdivy be a collection of proper loops
in DyND*;; on D*;; for i=1,--,u. Then, A;UJ: satisfies
the assumptions in Theorem 1.4, and so there exists a loop Jjx

of some J; such that J,x is contractible in D*q4 -igj(AgUJ;).

We have a non-degenerate continuous map g : D?— D¥*;; such that

gd)N(AiU) =@ for i#j. Using this g, we perform the

_11_
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first cut-and-paste for D;CDyU--UDp =Dy QU UDu © and
obtain Dy ‘VU--UDp ‘¥, Let w be the number of loops in
(DyU--UDu) ND*;4. By the repetition of the procedure w times,
we can get rid of all loops in (D4U--UDu) ND*y4, and it is
easily checked that D; ‘Y U--UDu ™ satisfies the required

conditions for u=l, -,w, and we complete the proof of Theorem. []

3.3. Remarks. (1) From the proof of Theorem 3.2, we know that
w is the number of loops in (D1UUDL)N (P*;VUUD*u) and w=
m(1)+-+m(u), which is the number of singular-spheres in D; ‘¥’
UeeUDu ™,

(2) Let D and D* be a normal singular-disk and a 2-cell,
respectively, in S3 (or R3) such that 8*D = dD* = 0 (a tri-
vial knot). Let A be a proper arc of DND* in D* and let
a be a simple arc in 0 with da = @*A. Since AUa is
contractible in D*, we can formulate a cut-and-paste of D along
AU a CD* as the same way as Definition 3.1 except for obvious
modefications, so that D = D' = D' USy', where S;' is a sin-
gular-sphere and D;' is a singular-disk with &8*D,' = 0.

Now, in the notation and assumptions of Theorem 3.2, we suppose
that Dis;ND*;x does not contain proper arcs on D*;x for i=l,
<, and j#k. Then, we can remove proper arcs of D ™ ND*

by a finite sequence of the modified cut-and-pastes.

§4. Applications to link theory

A continuous image of the 3-cell D® will be called a singular-
ball. The boundary of a singular-ball B is the image of &D3,
and we denote it by & *B.

- 12 -
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We use here the same notation as that of Section 0 in [KSS].
The following is an generalization of Horibe-Yanagawa's Lemma

[KSS, Lemma 1.6] in a sense.

4.1. Theorem. In the notation and assumptions of Theorem 3.2,
let Xy = ¥41U-+-UZin«) be a finite union of singular-
spheres in R3[0,1] defined by

Z15 = D1y [0J U0y X% [0,1]UD*y5(1]
for i=l,--,u and j=1,--,n(i). Then, we can find a finite
union of singular-balls B; = By1U-+-UBinq1y in R3[0,00) for
i=1,+-, u, such that @*Bi; = X5 for every i and j, and
BiNBy = & for i#h.

Proof. The proof is similar to that of [KSS, Lemma 1.6]. We
shall construct the required singular-balls BiU--UBu by
specifying the cross-sections BisNR3[t] for all i and Jj.

Under the notation of Theorem 3.2, We also use Theorem 3.2. Let
gu: D2— D*;U--UD*u (u=l,--,w) be a non-degenerate continuous
map such that we perform the u-th cut-and-paste

Dy B Yo YD (81 b Dy W Yoo UPpr W

in Theorem 3.2 along the loop gu(JD?) under gu. We extend gu
to a continuous map

g*u: h2(D2xD!)— N(D* U --UD* 1 ;R3)=(D*;U---UD* ) xD?
of the 3-cell h2(D?2xD!) naturally, and we denote the singular-
ball g*.(h?(D2xD!')) by Hy. We divide the interval [0.1] into
the subintervals [0,t1]. [t1.t2], =, [tw-1.tw], [tw.1], where t. =
u/ (wtl), u=l,--,w. Let

(B1U--UBu) NR3[t] = (D4U--UDu) [t] for 0St<t,

(ByU--UBu)NR3[t4] = (D4U--UDu UH,) [t4],

- 13 -
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(ByU-+UBu) NR3[t] = (B ¥ U UDp ) [t] for t1<t<t,,
(B1U--UBu)NR3[t] =(D4 ®*" D U-UDp 1) [t] for tu-1<t<tu,
(ByU-=UBu) NR3[tu] = (D4 @D U~ UDp "1 UHy) [tu],
(B1U--UBu)NR3[t] = (D3P U-UDp W) [t] for tu<t<tus1.
(B1U--UBu)NR3[tw] = D1 VU~ UDu ¥V UH) [tu],
(BiU--UBu)NR3[t] = (D ™ U~ UDu ™) [t] for tu<tSl.

Thus, we constructed (B;U--UBu)NR3[0,1] which consists of
n=n(l)+--+n(w) singular-balls with w=m(l1)+--+m(n) singular-
balls removed.

Let Sis™ =DysUD*;5; be the singular-sphere for i=1,+-, u
and j=m(i)+1,--,m(i)+n(i), and let S;= Dy ™ UD*; = §;; ¥ U U
Simcty+n ¢ty ¥, which consists of m(i)+n(i) singular-spheres in
R3. From Theorem 3.2(2) and (3),it is easy to see that SiN S
= (J for i#h, which is the assumption of Theorem 2.4.

We divide the interval [1,2] into the n+w+l subintervals [1,s4].
[s1.82], =, [Sn+w-1,Snewl, [Snev. 2], where sy= 1 + v/(n+wtl), v=1,
«-.n+w. From now on, we construct (B;U--UBu)NR3[1,2] so
that (ByU--UBu)NR3[0,2] forms the required singular-balls.
By Theorem 2.4, there exist j€{l,-,pn} and k€ ({l,-,m(j)+n(j)}
so that Ssx **’ is contractible in R3 - igjsx. Let g;: D3 —

R® - igjs, be a continuous map such that g;(@D3) = Ssx ¥,

and we denote g{(D3) by E;. We set S;1 =85 - Syx“’, and
S; =8 for i#j. Then, we define (B;U--UBu)NR3[1,s,)

as follows :
(ByU--UBu) NR3[t] = (S1U--USu)[t] for 1St<s;,

...14..
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(ByU--UBu) NR3[s4] = (S1 U~ USUEy) [s1].

(BiU--UBu)NR3[t] = (S; P U--USu V) [t] for s1<t<ss.

By Theorem 2.4, there exist j' €{l,~-,u} and k' €{l,-.m(j")
+n(j')} so that S,-x+ is contractible in R3 - ig.is’m' Let

g2: D3> R3 - igﬁﬁ“ be a continuous map with g2(8D3)= S;'x-,

and we denote g,(D3) by E;. We set S+ (2 = 8y D - §y.. (D
and §;‘? = 8§V for i#j . We define (B4U--UBu) NR3[sz,s3)
as follows :
(B4 U--UBw) NR3[s2] = (84 P U--USu ‘VE)) [s2].
(BiU-=UBu)NR3[t] = (S1PU--USu 2)[t] for sa<t<ss.
For R3[s3.s4).+, R3[Sn+w-1.5n+w). R3[sn+w.2), we repeat this
process. It should be noticed that §; ¥~ U..uspy »+v-D
consists of a single singular-sphere and S;®¥> U«-USpu (*t¥) =
. Therefore, (ByU-+UBu) NR3[sns+w] consists of a singular-
ball Enswlsns+w], and (BiU--UBu)NR3[t] = & for spw<t<2.
Thus, we obtain a union of singular-balls By = By1U - UBin)
in R3[0,00) for i=1,--,u such that &@*Bi; = X;;. From our
construction, it is easily checked that BiNBy = & for i#h,

and this completes the proof of Theorem 4.1. [

The relation of link-homotopy was introduced in classical link
theory by Milnor[M], and studied in higher dimensional links by
Massey-Rolfsen[MR] and Koschorke[K].etc. We record a corollary

to Theorem 4.1 involving in link-homotopy.

4.2. Definition. Let P;,-,Pu be polyhedra, and let P =P,
H--IUPu be the disjoint union, and let X be a manifold. A
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continuous map f : P — X 1is said to be a link-map, iff f(P;) N
f(Pn) =& for i#h. Two link-maps fo and f; of P into

X will be called link-homotopic, iff there exists a homotopy
{nit€1r : P> X such that no = fo, n1 = £1, and 70 (P) N
ne¢(Pn) = for i#h and each teI=[0,1].

4.3. Theorem. Let 0; = 0;1U+UOin¢1)  be a trivial link in
the 3-space R3 = R3[0]CR3[0,00) (or S3C @D?) for i=l,--,pu,
such that 0,U--UOu is also a trivial link. Let Py = D?;,1I
««1ID2;n¢5» be the disjoint union of n(i) 2-cells for i=1,--, u,
and we set P = PiIl-~IPu. Let f and e be non-degenerate
link-maps of P into R3 (or S3) such that f£(8D2iy) = 05y =
e(8D?yy) for i=l,~,p and j=1,--,n(i).

Then, f and e are link-homotopic in R3[0,00) (or D4) keep-
ing 04U--U0u fixed.

Proof. Let f£(D?;5) =Diy and Dy = DyyU++UDinqiy for i=1,
«e,u and j=1,~-,n{i). Let g : P — R® be an embedding, and
let g(D?y5) = D*;5 and D¥; = D*;;U--UD*i5¢1). In this nota-
tion, it suffices to show that f and g are link-homotopic in
R3[0,00) keeping 0 U--UOu.

In the notation of Theorem 4.1, we have a finite union of sin-
gular-balls ByU--UBu, By = By1U*+UBinc1) in R3[0,00) such
that BiNBy = & for i#h and &*Biy = ;5. Let byy: D2XI
— R3[0,0) be a continuous map of the 3-cell D2XI such that
bss(D2XI) = Byy. We may assume that byy | D2X0 = £|D?;; and
bss | D2X1
a link-homotopy {n:}t€:1 : P — R3[0,00) defined by

n+(D?15) = bys(D2Xt)

g| D?;3. Then, associating with these bi;, we have
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for every t€I. From the condition of the singular-balls B;U
««UBu in Theorem 4.1, it is easily checked that this homotopy
{nie€r between f and g satisfies our required condition,

and completing the proof of Theorem 4.3. O
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