3次元空間における特異曲面の 「切ったー貼った」技術

早稲田大学教育学部 鈴木 晋一

本研究は、神戸大学理学部・細川藤次教授との共同研究の成果の一部であり、その内容は論文[HS]において公表準備中である。

3次元多様体、あるいは3次元多様体内の曲面を研究するに際しては、いわゆる「切った-貼った(cut-and-paste)」を日常的に用いるし、またそれなりに有効である。ここでは、この「切った-貼った」技術を特異曲面(つまり曲面の連続写像による像)に対しても適用できるように一般化し、特異曲面をある自然な条件下で変形することを試みる。

またその応用として、3次元空間 R^3 内の平凡型の絡み目に張った2組の特異円盤系は、4次元上半空間において互いに絡み目ホモトープであることを証明する。

以下の考察は、すべて区分線形のカテゴリーで行う。

§1. Singular loops in a 2-cell

We denote by ∂X and ${}^{\circ}X$, respectively, the boundary and the interior of a manifold X. For a subcomplex P in a complex M, by N(P;M) we denote a regular neighborhood of P in M, that is, we construct the second derived of M and take the closed star of P, see [H], [RS].

We shall say that a submanifold X of a manifold Y is proper iff $X \cap \partial Y = \partial X$.

- By \mathbb{R}^n , \mathbb{D}^n and \mathbb{S}^{n-1} we shall denote the Euclidean n-space, the standard n-cell and the standard (n-1)-sphere $\partial \mathbb{D}^n$, respectively.
- 1.1.Definition. (1) Let $f: D^1 \to M$ and $g: S^1 \to M$ be non-degenerate continuous maps into a manifold M. Then, the images $f(D^1) = A$ and $g(S^1) = J$ will be called a singular-arc (or simply an arc) and a singular-loop (or simply a loop), respectively. In particular, A and J will be called a simple arc and a simple loop, respectively, if f and g are embeddings. The boundary of an arc $f(D^1) = A$ is the image $f(\partial D^1)$ of the boundary ∂D^1 , and we denote it by ∂^*A .
- (2) An arc A in a manifold M is said to be **proper** iff $A \cap \partial F = \partial^* A$. A loop J in a manifold M is said to be **proper** iff $J \subset {}^{\circ}F$.
- (3) Let $B = B_1 \cup \cdots \cup B_n$ be a finite union of proper arcs and proper loops in a 2-manifold F^2 . A point p in B is said to be a **singular-point** of maltiplicity k iff the number of the preimage of p is k with $k \ge 2$.

We shall say that B is normal, iff

- (i) B has only a finite number of singular-points of multiplicity 2, and
 - (ii) at every singular point of B, B crosses transversally.
- 1.2. Lemma. Let $J_1 = J_{11} \cup \cdots \cup J_{1m(1)}$ and $J_2 = J_{21} \cup \cdots \cup J_{2m(2)}$ be finite unions of proper loops in a simply connected 2-manifold F^2 such that $J_1 \cap J_2 = \emptyset$. Then, there exists $j \in \{1, \cdots, m(1)\}$ or $k \in \{1, \cdots, m(2)\}$ so that J_{1J} is contractible in $F^2 J_2$ or J_{2k} is contractible in $F^2 J_1$.

Proof. We may assume that $J_1 \cup J_2$ is polygonal and normal. Let $R = \{R_1, \cdots, R_r\}$ be the set of regions of $F^2 - {}^\circ N(J_1; F^2)$. It will be noticed that $R_1 \cup \cdots \cup R_r \supset J_2$.

If there exist a loop, say J_{2k} , of J_2 , and a simply connected region, say R_h , of R with $J_{2k} \subset R_h$, then J_{2k} is contractible in $R_h \subset F^2 - J_1$, and so the proof is complete.

So, we may assume that there exist some non-simply connected regions, say Q_1, \cdots, Q_q , of R, so that $Q_1 \cup \cdots \cup Q_q \supset J_2$. Let $C_1 \cup \cdots \cup C_s = \partial Q_1 \cup \cdots \cup \partial Q_q$ be the disjoint union of simple loops on F^2 , and let \triangle_h be the 2-cell on F^2 with $\partial \triangle_h = C_h$ $(h=1, \cdots, s)$. We choose an innermost 2-cell, say \triangle_1 , in $\{\triangle_1, \cdots, \triangle_s\}$, i.e. there is no other \triangle_h in \triangle_1 . Since \triangle_1 is not belong to R and $C_1 = \partial \triangle_1$ is the one of the boundary curves $\partial Q_1 \cup \cdots \cup \partial Q_q$, it holds that $\triangle_1 \cap J_1 \neq \emptyset$, and since \triangle_1 does not contain any Q_1, \cdots, Q_q and $J_2 \subset Q_1 \cup \cdots \cup Q_q$, it holds that $\triangle_1 \cap J_2 = \emptyset$. Now, any $J_{1,j}$ of J_1 with $J_{1,j} \cap \triangle_1 \neq \emptyset$ is contractible in $\triangle_1 \subset F^2 - J_2$, and so the proof is complete. \square

By the same way as that of Lemma 1.2, we have the following:

1.3. Theorem. Let $J_i = J_{i\,1} \cup \cdots \cup J_{i\,m\,(i)}$ be a finite union of proper loops in a simply connected 2-manifold F^2 for $i=1,\cdots,\mu$, such that $J_i \cap J_h = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1,\cdots,\mu\}$ and $k \in \{1,\cdots,m\,(j)\}$ so that $J_{j\,k}$ is contractible in $F^2 - \bigcup_{i \neq j} J_i$.

Proof. We prove this by induction on the number μ of the classes J_1 . The case of $\mu=1$ is trivial, and the case $\mu=2$ is Lemma 1.2. So, we assume that $\mu \geq 3$ and Theorem is true for $\mu-1$. We may assume that every J_1 is polygonal and normal.

Let $R = \{R_1, \dots, R_r\}$ be the set of regions of $F^2 - {}^{\circ}N(J_1; F^2)$. It will be noted that $R_1 \cup \dots \cup R_r \supset J_2 \cup \dots \cup J_{\mu}$.

If there exist a loop, say J_{Jk} , of J_J and a simply connected region, say R_h , of R with $J_{Jk} \subset R_h$, then $J_1' = J_1 \cap R_h$ (i=2,..., μ) is a finite union of loops in the simply connected region R_h satisfying the conditions of Theorem. By induction hypothesis, we have a loop, say J_{Jk} , of $J_J' \subset J_J$ so that J_{Jk} is contractible in $R_h - i \not = 1$, $j^{J_1'} \subset F^2 - i \not = j^{J_1}$, and so the proof is complete.

So, we may assume that there exist some non-simply connected regions, say Q_1, \cdots, Q_q of R, so that $Q_1 \cup \cdots \cup Q_q \supset J_2 \cup \cdots \cup J\mu$. Now, the proof of this case, which is omitted here, is the same as that of Lemma 1.2. \square

In general, we have the following:

1.4. Theorem. Let $A_1 = A_{1\,1} \cup \cdots \cup A_{1\,n\,(1)}$ be a finite union of proper arcs in a simply connected 2-manifold F^2 for $i=1,\cdots,\mu$, and let $J_1 = J_{1\,1} \cup \cdots \cup J_{1\,m\,(1)}$ be a finite union of proper loops in F^2 , such that $(A_1 \cup J_1) \cap (A_h \cup J_h) = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1,\cdots,\mu\}$ and $k \in \{1,\cdots,m\,(j)\}$ so that J_{jk} is contractible in $F^2 - \bigcup_{i \neq j} (A_1 \cup J_1)$.

Proof. We may assume that every $A_1 \cup J_1$ is polygonal and normal. Since every region of F^2 - ${}^{\circ}N(A_1;F^2)$ is simply connected, the proof of Theorem is similar to that of Theorem 1.3, and so it is omitted here. \square

§ 2. Singular spheres in a 3-cell

In this section, we will discuss singular 2-spheres in a 3-cell and prove similar theorems to these in the previous section.

First let us explain several well-known facts to be used in the sequel.

If a compact 3-manifold M is embeddable in the 3-sphere S^3 , then there is a 1-complex G in S^3 such that the exterior S^3 - ${}^{\circ}N(G;S^3)$ is homeomorphic to M by Fox[F].

A 1-complex G in S^3 is said to be splittable, iff there exists a 2-sphere $S \subseteq S^3$ - G, such that both components of S^3 - S contain points of G. If a 1-complex $G \subseteq S^3$ is not splittable, then the exterior S^3 - ${}^{\circ}N(G;S^3)$ is aspherical, i.e. the second homotopy group $\pi_2(S^3 - {}^{\circ}N(G;S^3)) = \{0\}$, by Papakyriakopoulos[P].

In particular, if $G \subset S^3$ is a connected 1-complex, then S^3 - °N($G:S^3$) is aspherical.

We will call a compact 3-manifold M an aspherical region iff M is embeddable in S^3 and aspherical.

It holds the following:

- 2.1. Proposition. (1) If a compact 3-manifold M is embeddable in S^3 and ∂M is connected, then M is an aspherical region.
- (2) Let M be an aspherical region with connected boundary ∂ M and let $F \subset {}^{\circ}M$ be a closed connected 2-manifold. Then, there exists an aspherical region R in M with ∂ R = F. \square

The following corresponds to Definition 1.1.

2.2. Definition. (1) Let $f: F^2 \to M$ be a non-degenerate continuous map of compact 2-manifold F^2 into a manifold M. Then, the image $f(F^2) = F$ will be called a **singular-surface**. In particular, singular-surfaces $f(D^2) = D$ and $g(S^2) = S$ will be called a **singular-disk** and a **singular-sphere**, respectively.

The boundary of a singular-surface $f(F^2) = F$ is the image $f(\partial F^2)$, and we denote it by $\partial^* F$.

- (2) A singular-surface F in a manifold M is said to be proper iff $F \cap \partial M = \partial^* F$.
- (3) Let F be a proper singular-surface in a 3-manifold M. A point p in F is a singular-point of multiplicity k iff the number of the preimage of p is k with $k \ge 2$.

We shall say that F is normal iff

- (i) F has only singular-points of multiplicity 2 and 3,
- (ii) the set of singular-points of multiplicity 2 is a finite number of polygonal curves, that is, singular-arcs and singular-loops, which will be called **double-lines**,
- (iii) the set of singular-points of multiplicity 3 consists of a finite number of points which are intersection points of the double-lines, which will be called **triple-points**, and
- (iv) at every singular-point of multiplicity 2. F crosses transversally.

In fact, every singular-point p of F has one of the neighborhood described in Figure 1, and it is well known that every singular-surface may be ϵ -approximated by such a normal one.

Figure 1

2.3. Lemma. Let $S_1 = S_{11} \cup \cdots \cup S_{1m(1)}$ and $S_2 = S_{21} \cup \cdots \cup S_{2m(2)}$ be finite unions of proper singular-spheres in an aspherical region M with connected boundary ∂ M such that $S_1 \cap S_2 = \emptyset$. Then, there exists $j \in \{1, \cdots, m(1)\}$ or $k \in \{1, \cdots, m(2)\}$ so that $S_{1,j}$ is contractible in M - S_2 or S_{2k} is contractible in M - S_1 .

Proof. We may assume that $S_1 \cup S_2$ is normal. The proof of this Lemma is similar to that of Lemma 1.2.

Let $R = \{R_1, \dots, R_r\}$ be the set of regions of $M - {}^{\circ}N(S_1; M)$. It will be noted that $R_1 \cup \dots \cup R_r \supset S_2$.

If there exist a singular-sphere, say S_{2k} , of S_2 and an aspherical region, say R_h , of R with $S_{2k} \subset R_h$, then S_{2k} is contractible in $R_h \subset M - S_1$, and completing the proof.

So, we may assume that there exist some spherical regions, say Q_1, \cdots, Q_q , in R, so that $Q_1 \cup \cdots \cup Q_q \supset S_2$. Let $F_1 \cup \cdots \cup F_s = \partial Q_1 \cup \cdots \cup \partial Q_q$ be the disjoint union of closed connected 2-manifolds, and let M_h be the aspherical region in M with $\partial M_h = F_h$ for $h=1,\cdots,s$, see Proposition 2.1(2). We choose an innermost region, say M_1 , in these aspherical regions, that is, there are no other M_h in M_1 . Then, by the same way as the proof of Lemma 1.2, it is easily checked that $M_1 \cap S_1 \neq \emptyset$ and $M_1 \cap S_2 = \emptyset$. Now, any $S_{1,j}$ of S_1 with $S_{1,j} \cap M_1 \neq \emptyset$ is contractible in $M_1 \subset M - S_2$. and completing the proof. \square

The following theorems correspond to Theorems 1.3 and 1.4, respectively.

2.4. Theorem. Let $S_1 = S_{i,1} \cup \cdots \cup S_{i,m(i)}$ be a finite union of proper singular-spheres in an aspherical region M with connected boundary ∂M for $i=1,\cdots,\mu$, such that $S_i \cap S_h = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1,\cdots,\mu\}$ and $k \in \{1,\cdots,m(j)\}$ so that $S_{j,k}$ is contractible in $M = \bigcup_{i \neq j} S_i$.

Proof. The proof is similar to that of Lemma 2.3, and is word for word that of Theorem 1.3. \square

2.5. Theorem. Let M be an aspherical region with connected boundary ∂M . Let $D_i = D_{i\,1} \cup \cdots \cup D_{i\,n\,(i)}$ and $S_i = S_{i\,1} \cup \cdots \cup S_{i\,m\,(i)}$ be finite unions of proper singular-disks and proper singular-spheres in M, respectively, for $i=1,\cdots,\mu$, such that $(D_i \cup S_i) \cap (D_h \cup S_h) = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1,\cdots,\mu\}$ and $k \in \{1,\cdots,m(j)\}$, so that S_{jk} is contractible in $M - \bigcup_{i \neq j} (D_i \cup S_i)$.

Proof. We may assume that every $D_1 \cup S_1$ is normal. Since every region R of M - ${}^{\circ}N(D_1;M)$ is an aspherical region, the proof of this Theorem is similar to that of Theorem 2.4, and is word for word that of Theorem 1.4. \square

§ 3. Singular cut-and-pastes

- 3.1. Definition. Let M^3 be a 3-manifold, and let E^2 be a 2-manifold in ${}^{\circ}M^3$. Let $f: F^2 \to M^3$ be a non-degenerate continuous map of a compact 2-manifold F^2 into M^3 such that
 - (i) $f(F^2) = F$ is a normal singular-surface.
 - (ii) F intersects with E² transversally, and
- (iii) every triple-point and every branch point of F do not lie on E^2 .

Then, the intersection $F \cap E^2$ consists of a finite number of arcs and loops. Let J be a loop in $F \cap E^2$, and let J^* be the preimage of J in F^2 ; J^* is a simple loop. We suppose that J^* is 2-sided on F^2 , and let F'^2 be the 2-manifold obtained from F^2 by attaching a 2-handle along J^* ; $F'^* = F^2 \cup h^2$.

Now, we suppose that J is contractible on E^2 . Then, we have a non-degenerate continuous map, say g, of D^2 into $E^2 \subset M^3$ such that $g(\partial D^2) = J$. Using the product structure $N(E^2; M^3) = J$

 $E^2 \times D^1$, we define a non-degenerate continuous map $f': F'^2 \to M^3$ as follows:

f' | F'² - h²(D²×
$$\partial$$
D¹) = f | F² - h²(∂ D²×D¹),
f' | h²(D²× ∂ D¹) = g× ∂ D¹.

We say that $F' = f'(F'^2)$ is obtained from $F = f(F^2)$ by a cut-and-paste along $J \subset E^2$, and we denote simply by $F \to F'$.

It will be noticed that $F' \cap E^2 = F \cap E^2 - J$ and that $F'^2 = D^2 \coprod S^2$ (a disjoint union) provided that $F^2 = D^2$ and $F'^2 = S^2 \coprod S^2$ provided that $F^2 = S^2$.

3.2. Theorem. Let $\mathbf{0}_1 = \mathbf{0}_{1\,1} \cup \cdots \cup \mathbf{0}_{1\,n\,(1)}$ be a trivial link in the 3-sphere S^3 (or the 3-space R^3) for $i=1,\cdots,\mu$, such that $\mathbf{0}_1 \cup \cdots \cup \mathbf{0}_{\mu}$ is also a trivial link. Let $\mathbf{0}_1 = \mathbf{0}_{1\,1} \cup \cdots \cup \mathbf{0}_{1\,n\,(1)}$ be a finite union of normal singular-disks in S^3 for $i=1,\cdots,\mu$, such that $\partial^*\mathbf{0}_{1\,j} = \mathbf{0}_{1\,j}$ for $i=1,\cdots,\mu$ and $j=1,\cdots,n\,(i)$, and $\mathbf{0}_1 \cap \mathbf{0}_h = \emptyset$ for $i \neq h$.

Let $\mathbf{D^*_i} = \mathbf{D^*_{i_1}} \cup \cdots \cup \mathbf{D^*_{i_{n(i)}}}$ be mutually disjoint 2-cells in S^3 (or R^3) for $i=1,\cdots,\mu$, such that $\partial D^*_{i,j} = 0_{i,j}$ for $i=1,\cdots,\mu$ and $j=1,\cdots,n(i)$, and $\mathbf{D^*_i} \cap \mathbf{D^*_h} = \emptyset$ for $i\neq h$.

We suppose that $\mathbf{D}_1 \cup \cdots \cup \mathbf{D}\mu$ intersects with $\mathbf{D}^*_1 \cup \cdots \cup \mathbf{D}^*\mu$ transversally, and any triple-point and any branch-point of $\mathbf{D}_1 \cup \cdots \cup \mathbf{D}\mu$ do not lie on $\mathbf{D}^*_1 \cup \cdots \cup \mathbf{D}^*\mu$.

Then, there exists a finite sequence of cut-and-pastes

 $D_{i,j}^{(u)}$ is a singular-disk with $\partial^*D_{i,j}^{(u)} = 0_{i,j}$ and $S_{i,s}^{(u)}$ is a singular-sphere, for $i=1,\cdots,\mu$; $j=1,\cdots,n$ (i); $u=1,\cdots,w$; $s=1,\cdots,m$ (i),

- (2) $D_i^{(u)} \cap D_h^{(u)} = \emptyset$ for $i \neq h$, $u=1, \dots, w$, and
- (3) $D_i^{(w)} \cap D_h^* = \emptyset$ for $i \neq h$, and $D_i^{(w)} \cap D_i^* = (D_{i_1}^{(w)} \cup \dots \cup D_{i_{n(1)}}^{(w)}) \cap D_i^*$ consists of a finite number of proper arcs in D_i^* .

Proof. From our hypothesis, $D_{i,j} \cap D^*_{hk}$ consists of proper loops in D^*_{hk} provided that $i \neq h$, and $D_{i,j} \cap D^*_{i,k}$ consists of proper loops and proper arcs in $D^*_{i,k}$ for every i, j,k. Therefore, by the induction on the number $n = n(1) + \dots + n(\mu)$ of 2-cells in $D^*_{i,l} \cup \dots \cup D^*_{i,l} \cup \dots \cup D^*_{i,l}$, it suffices to show that there exists a finite sequence of cut-and-pastes of $D_1 \cup \dots \cup D\mu$ along proper loops $(D_1 \cup \dots \cup D\mu) \cap D^*_{i,l} \subset D^*_{i,l}$ so that $D_1^{(u)} \cup \dots \cup D\mu^{(u)}$ satisfies the conditions (1), (2) and

(3) $D_1^{(w)} \cap D^*_{11} = \emptyset$ and $D_1^{(w)} \cap D^*_{13} = D_1^{(w)} \cap D^*_{13}$ for i=2, ..., t and j=2,..., n(1), and $D_1^{(w)} \cap D^*_{11}$ consists of a finite number of proper arcs in D^*_{11} and $D_1^{(w)} \cap D^*_{13} = D_1^{(w)} \cap D^*_{13}$ for j=2,..., n(1).

We consider $D_1 \cup \cdots \cup D\mu$ and D^*_{11} . Let $A_1 = A_{11} \cup \cdots \cup A_{1a(1)}$ be the collection of proper arcs in $D_1 \cap D^*_{11}$ on D^*_{11} , and let $A_1 = \emptyset$ be the collection of proper arcs in $D_1 \cap D^*_{11}$ for i=2, \cdots , μ . Let $J_1 = J_{11} \cup \cdots \cup J_{1b(1)}$ be a collection of proper loops in $D_1 \cap D^*_{11}$ on D^*_{11} for $i=1,\cdots,\mu$. Then, $A_1 \cup J_1$ satisfies the assumptions in Theorem 1.4, and so there exists a loop J_{Jk} of some J_J such that J_{Jk} is contractible in $D^*_{11} - \bigcup_{i \neq j} (A_i \cup J_i)$. We have a non-degenerate continuous map $g: D^2 \to D^*_{11}$ such that $g(D^2) \cap (A_1 \cup J_1) = \emptyset$ for $i \neq j$. Using this g, we perform the

first cut-and-paste for $D_3 \subset D_1 \cup \cdots \cup D\mu = D_1^{(0)} \cup \cdots \cup D\mu^{(0)}$ and obtain $D_1^{(1)} \cup \cdots \cup D\mu^{(1)}$. Let w be the number of loops in $(D_1 \cup \cdots \cup D\mu) \cap D^*_{11}$. By the repetition of the procedure w times, we can get rid of all loops in $(D_1 \cup \cdots \cup D\mu) \cap D^*_{11}$, and it is easily checked that $D_1^{(u)} \cup \cdots \cup D\mu^{(u)}$ satisfies the required conditions for $u=1,\cdots,w$, and we complete the proof of Theorem. \square

- 3.3. Remarks. (1) From the proof of Theorem 3.2, we know that w is the number of loops in $(D_1 \cup \cup D\mu) \cap (D^*_1 \cup \cup D^*\mu)$ and w= $m(1)+\cdots+m(\mu)$, which is the number of singular-spheres in $D_1^{(w)} \cup \cdots \cup D\mu^{(w)}$.
- (2) Let D and D* be a normal singular-disk and a 2-cell, respectively, in S³ (or R³) such that $\partial^*D = \partial D^* = 0$ (a trivial knot). Let A be a proper arc of $D \cap D^*$ in D* and let α be a simple arc in 0 with $\partial \alpha = \partial^*A$. Since $A \cup \alpha$ is contractible in D*, we can formulate a cut-and-paste of D along $A \cup \alpha \subset D^*$ as the same way as Definition 3.1 except for obvious modefications, so that $D \to D' = D_1' \cup S_1'$, where S_1' is a singular-sphere and D_1' is a singular-disk with $\partial^*D_1' = 0$.

Now, in the notation and assumptions of Theorem 3.2, we suppose that $D_{i,j} \cap D^*_{i,k}$ does not contain proper arcs on $D^*_{i,k}$ for i=1, ..., μ and $j \neq k$. Then, we can remove proper arcs of $D_i^{(w)} \cap D^*_i$ by a finite sequence of the modified cut-and-pastes.

§4. Applications to link theory

A continuous image of the 3-cell D^3 will be called a **singular-ball**. The **boundary** of a singular-ball B is the image of ∂D^3 , and we denote it by ∂^*B .

We use here the same notation as that of Section 0 in [KSS]. The following is an generalization of Horibe-Yanagawa's Lemma [KSS, Lemma 1.6] in a sense.

4.1. Theorem. In the notation and assumptions of Theorem 3.2, let $\Sigma_1 = \Sigma_{11} \cup \cdots \cup \Sigma_{1n(1)}$ be a finite union of singular-spheres in $\mathbb{R}^3[0,1]$ defined by

$$\Sigma_{1,1} = D_{1,1}[0] \cup O_{1,1} \times [0,1] \cup D^*_{1,1}[1]$$

for $i=1, \dots, \mu$ and $j=1, \dots, n$ (i). Then, we can find a finite union of singular-balls $B_i = B_{i,1} \cup \dots \cup B_{i,n-(1)}$ in $R^3[0,\infty)$ for $i=1,\dots,\mu$, such that $\partial^*B_{i,j} = \Sigma_{i,j}$ for every i and j, and $B_i \cap B_h = \emptyset$ for $i \neq h$.

Proof. The proof is similar to that of [KSS, Lemma 1.6]. We shall construct the required singular-balls $B_1 \cup \cdots \cup B\mu$ by specifying the cross-sections $B_{1,j} \cap R^3[t]$ for all i and j.

Under the notation of Theorem 3.2, We also use Theorem 3.2. Let $g_u \colon D^2 \to D^*_1 \cup \cdots \cup D^*_\mu$ (u=1,...,w) be a non-degenerate continuous map such that we perform the u-th cut-and-paste

$$\mathbf{D_{1}}^{\,(\mathbf{u}-\mathbf{1})} \cup \cdots \cup \mathbf{D}\mu^{\,\,(\mathbf{u}-\mathbf{1})} \,\, \rightarrow \,\, \mathbf{D_{1}}^{\,\,(\mathbf{u})} \cup \cdots \cup \mathbf{D}\mu^{\,\,(\mathbf{u})}$$

in Theorem 3.2 along the loop $g_u\left(\partial\,D^2\right)$ under g_u . We extend g_u to a continuous map

 g^*_u : $h^2(D^2 \times D^1) \rightarrow N(D^*_1 \cup \cdots \cup D^*_n \mu; R^3) = (D^*_1 \cup \cdots \cup D^*_n \mu) \times D^1$ of the 3-cell $h^2(D^2 \times D^1)$ naturally, and we denote the singularball $g^*_u(h^2(D^2 \times D^1))$ by H_u . We divide the interval [0,1] into the subintervals $[0,t_1],[t_1,t_2],\cdots,[t_{w-1},t_w],[t_w,1]$, where $t_u = u/(w+1)$, $u=1,\cdots,w$. Let

$$(B_1 \cup \cdots \cup B\mu) \cap R^3[t] = (D_1 \cup \cdots \cup D\mu)[t] \text{ for } 0 \leq t < t_1$$

$$(B_1 \cup \cdots \cup B\mu) \cap R^3[t_1] = (D_1 \cup \cdots \cup D\mu \cup H_1)[t_1],$$

 $(\mathbf{B}_1 \cup \cdots \cup \mathbf{B}_{\mu}) \cap \mathbf{R}^3[\mathbf{t}] = (\mathbf{D}_1^{(1)} \cup \cdots \cup \mathbf{D}_{\mu}^{(1)})[\mathbf{t}] \quad \text{for } \mathbf{t}_1 < \mathbf{t} < \mathbf{t}_2,$

 $(B_1 \cup \cdots \cup B\mu) \cap R^3[t] = (D_1^{(u-1)} \cup \cdots \cup D\mu^{(u-1)})[t] \text{ for } t_{u-1} < t < t_u,$ $(B_1 \cup \cdots \cup B\mu) \cap R^3[t_u] = (D_1^{(u-1)} \cup \cdots \cup D\mu^{(u-1)} \cup H_u)[t_u],$ $(B_1 \cup \cdots \cup B\mu) \cap R^3[t] = (D_1^{(u)} \cup \cdots \cup D\mu^{(u)})[t] \text{ for } t_u < t < t_{u+1},$

 $(\mathbf{B}_1 \cup \cdots \cup \mathbf{B}_{\mu}) \cap \mathbf{R}^3[\mathbf{t}_w] = (\mathbf{D}_1^{(w-1)} \cup \cdots \cup \mathbf{D}_{\mu}^{(w-1)} \cup \mathbf{H}_w) [\mathbf{t}_w],$ $(\mathbf{B}_1 \cup \cdots \cup \mathbf{B}_{\mu}) \cap \mathbf{R}^3[\mathbf{t}] = (\mathbf{D}_1^{(w)} \cup \cdots \cup \mathbf{D}_{\mu}^{(w)}) [\mathbf{t}] \quad \text{for } \mathbf{t}_w < \mathbf{t} \leq 1.$

Thus, we constructed $(B_1 \cup \cdots \cup B_{\mu}) \cap R^3[0,1]$ which consists of $n=n(1)+\cdots+n(\mu)$ singular-balls with $w=m(1)+\cdots+m(\mu)$ singular-balls removed.

Let $S_{i,j}^{(w)} = D_{i,j}^{(w)} \cup D^*_{i,j}$ be the singular-sphere for $i=1, \dots, \mu$ and $j=m(i)+1,\dots,m(i)+n(i)$, and let $S_i=D_i^{(w)} \cup D^*_i=S_{i,1}^{(w)} \cup \dots \cup S_{i,m(i)+n(i)}^{(w)}$, which consists of m(i)+n(i) singular-spheres in \mathbb{R}^3 . From Theorem 3.2(2) and (3), it is easy to see that $S_i \cap S_h = \emptyset$ for $i \neq h$, which is the assumption of Theorem 2.4.

We divide the interval [1,2] into the n+w+1 subintervals $[1,s_1]$, $[s_1,s_2],\cdots,[s_{n+w-1},s_{n+w}],[s_{n+w},2]$, where $s_v=1+v/(n+w+1)$, v=1, $\cdots,n+w$. From now on, we construct $(B_1\cup\cdots\cup B\mu)\cap R^3[1,2]$ so that $(B_1\cup\cdots\cup B\mu)\cap R^3[0,2]$ forms the required singular-balls. By Theorem 2.4, there exist $j\in\{1,\cdots,\mu\}$ and $k\in\{1,\cdots,m(j)+n(j)\}$ so that $S_{jk}^{(w)}$ is contractible in $R^3-\underset{i\neq j}{\cup}S_1$. Let $g_1\colon D^3\to R^3-\underset{i\neq j}{\cup}S_1$ be a continuous map such that $g_1(\partial D^3)=S_{jk}^{(w)}$, and we denote $g_1(D^3)$ by E_1 . We set $S_3^{(1)}=S_3-S_{jk}^{(w)}$, and $S_1^{(1)}=S_1$ for $i\neq j$. Then, we define $(B_1\cup\cdots\cup B\mu)\cap R^3[1,s_2)$ as follows:

 $(B_1 \cup \cdots \cup B\mu) \cap \mathbb{R}^3[t] = (S_1 \cup \cdots \cup S\mu)[t]$ for $1 \le t < s_1$,

 $\begin{array}{lll} (B_1\cup\cdots\cup B\mu)\cap R^3[s_1] &=& (S_1\cup\cdots\cup S\mu\cup E_1)[s_1],\\ (B_1\cup\cdots\cup B\mu)\cap R^3[t] &=& (S_1^{(1)}\cup\cdots\cup S\mu^{(1)})[t] & \text{for } s_1< t< s_2.\\ & \text{By Theorem 2.4, there exist } \mathbf{j}'\in \{1,\cdots,\mu\} & \text{and } \mathbf{k}'\in \{1,\cdots,m(\mathbf{j}')\}\\ & +n(\mathbf{j}')\} & \text{so that } S_{\mathbf{j}'\mathbf{k}'} & \text{is contractible in } R^3-\underbrace{i}_{\mathbf{j}'}S_1^{(1)}. & \text{Let}\\ & g_2\colon D^3\to R^3-\underbrace{i}_{\mathbf{j}'}\mathbf{j}S_1^{(1)} & \text{be a continuous map with } g_2(\partial D^3)=S_{\mathbf{j}'\mathbf{k}'},\\ & \text{and we denote } g_2(D^3) & \text{by } E_2. & \text{We set } S_{\mathbf{j}'}^{(2)}=S_{\mathbf{j}'}^{(1)}-S_{\mathbf{j}'\mathbf{k}'}^{(1)}\\ & \text{and } S_1^{(2)}=S_1^{(1)} & \text{for } \mathbf{i}\neq\mathbf{j}'. & \text{We define } (B_1\cup\cdots\cup B\mu)\cap R^3[s_2,s_3)\\ & \text{as follows:} \end{array}$

 $(B_1 \cup \cdots \cup B\mu) \cap \mathbb{R}^3 [s_2] = (S_1^{(1)} \cup \cdots \cup S\mu^{(1)} E_2) [s_2],$

 $(B_1 \cup \cdots \cup B\mu) \cap \mathbb{R}^3[t] = (S_1^{(2)} \cup \cdots \cup S\mu^{(2)})[t]$ for $s_2 < t < s_3$.

For $R^3[s_3,s_4)$,..., $R^3[s_{n+w-1},s_{n+w})$, $R^3[s_{n+w},2)$, we repeat this process. It should be noticed that $S_1^{(n+w-1)} \cup \cdots \cup S_{\mu}^{(n+w-1)}$ consists of a single singular-sphere and $S_1^{(n+w)} \cup \cdots \cup S_{\mu}^{(n+w)} = \emptyset$. Therefore, $(B_1 \cup \cdots \cup B_{\mu}) \cap R^3[s_{n+w}]$ consists of a singularball $E_{n+w}[s_{n+w}]$, and $(B_1 \cup \cdots \cup B_{\mu}) \cap R^3[t] = \emptyset$ for $s_{n+w} < t < 2$.

Thus, we obtain a union of singular-balls $B_i = B_{i\,1} \cup \cdots \cup B_{i\,n\,(i)}$ in $R^3[0,\infty)$ for $i=1,\cdots,\mu$ such that $\partial^*B_{i\,j} = \Sigma_{i\,j}$. From our construction, it is easily checked that $B_i \cap B_h = \emptyset$ for $i \neq h$, and this completes the proof of Theorem 4.1. \square

The relation of link-homotopy was introduced in classical link theory by Milnor[M], and studied in higher dimensional links by Massey-Rolfsen[MR] and Koschorke[K].etc. We record a corollary to Theorem 4.1 involving in link-homotopy.

4.2. Definition. Let P_1, \dots, P_{μ} be polyhedra, and let $P = P_1$ $\coprod \dots \coprod P_{\mu}$ be the disjoint union, and let X be a manifold. A

continuous map $f: P \to X$ is said to be a link-map, iff $f(P_1) \cap f(P_n) = \emptyset$ for $i \neq h$. Two link-maps f_0 and f_1 of P into X will be called **link-homotopic**, iff there exists a homotopy $\{\eta_t\}_{t \in I}: P \to X$ such that $\eta_0 = f_0$, $\eta_1 = f_1$, and $\eta_t(P_1) \cap \eta_t(P_n) = \emptyset$ for $i \neq h$ and each $t \in I = [0,1]$.

4.3. Theorem. Let $\mathbf{0}_1 = \mathbf{0}_{11} \cup \cdots \cup \mathbf{0}_{1n(1)}$ be a trivial link in the 3-space $R^3 = R^3[0] \subset R^3[0,\infty)$ (or $S^3 \subset \partial D^4$) for $i=1,\cdots,\mu$, such that $\mathbf{0}_1 \cup \cdots \cup \mathbf{0}_{\mu}$ is also a trivial link. Let $P_1 = D^2_{11} \coprod \cdots \coprod D^2_{1n(1)}$ be the disjoint union of n(i) 2-cells for $i=1,\cdots,\mu$, and we set $P = P_1 \coprod \cdots \coprod P_{\mu}$. Let f and e be non-degenerate link-maps of P into R^3 (or S^3) such that $f(\partial D^2_{1j}) = 0_{1j} = e(\partial D^2_{1j})$ for $i=1,\cdots,\mu$ and $j=1,\cdots,n(i)$.

Then, f and e are link-homotopic in $R^3[0,\infty)$ (or D^4) keeping $0_1 \cup \cdots \cup 0 \mu$ fixed.

Proof. Let $f(D^2_{1J}) = D_{1J}$ and $D_1 = D_{11} \cup \cdots \cup D_{1n(1)}$ for i=1, \cdots , μ and j=1, \cdots , n(i). Let $g: P \to R^3$ be an embedding, and let $g(D^2_{1J}) = D^*_{1J}$ and $D^*_1 = D^*_{11} \cup \cdots \cup D^*_{1n(1)}$. In this notation, it suffices to show that f and g are link-homotopic in $R^3[0,\infty)$ keeping $O_1 \cup \cdots \cup O_{\mu}$.

In the notation of Theorem 4.1, we have a finite union of singular-balls $B_1 \cup \cdots \cup B_{\mu}$, $B_1 = B_{i1} \cup \cdots \cup B_{in(1)}$ in $R^3[0,\infty)$ such that $B_1 \cap B_h = \emptyset$ for $i \neq h$ and $\partial^* B_{ij} = \Sigma_{ij}$. Let $b_{ij} \colon D^2 \times I \to R^3[0,\infty)$ be a continuous map of the 3-cell $D^2 \times I$ such that $b_{ij}(D^2 \times I) = B_{ij}$. We may assume that $b_{ij}|D^2 \times 0 = f|D^2_{ij}$ and $b_{ij}|D^2 \times 1 = g|D^2_{ij}$. Then, associating with these b_{ij} , we have a link-homotopy $\{\eta_t\}_t \in I: P \to R^3[0,\infty)$ defined by

$$\eta t (D^2_{ij}) = b_{ij} (D^2 \times t)$$

for every $t \in I$. From the condition of the singular-balls $B_1 \cup \cdots \cup B\mu$ in Theorem 4.1, it is easily checked that this homotopy $\{\eta_t\}_{t \in I}$ between f and g satisfies our required condition, and completing the proof of Theorem 4.3. \square

References

- [F] R.H. Fox: On the imbedding of polyhedra in 3-space, Ann. of Math. (2), 49 (1948), 462-470.
- [HS] F. Hosokawa and S. Suzuki: On singular cut-and-pastes in the 3-space with application to link-theory, in preparation.
- [H] J.F.P.Hudson: Piecewise Linear Topology, W.A.Benjamin, New York, 1969.
- [KSS] A. Kawauchi, T. Shibuya and S. Suzuki: Descriptions on surfaces in four-space I, Math. Sem. Notes Kobe Univ., 10 (1982), 75-125.
- [K] U. Koschorke: Higher-order homotopy invariants for higherdimensional link maps. Lecture Notes in Math., 1172 (1985). Springer-Verlag, 116-129.
- [MR] W.S. Massey and D. Rolfsen: Homotopy classification of higher dimensional links, Indiana Univ. Math. J., 34 (1985), 375-391.
- [M] J.Milnor: Link groups, Ann. of Math. (2), 59 (1954), 177-195.
- [RS] C.P. Rourke and B.J. Sanderson Introduction to Piecewise-Linear Topology, Ergebn. Math.u.ihrer Grenzgeb. Bd. 69, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [P] C.D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. of Math. (2), 66 (1957), 1-26.