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EVERY KNOT IS CLOSE TO INFINITELY MANY HYPERBOLIC
KNOTS

KATURA MIYAZAKI AND KIMIHIKO MOTEGI*

ABSTRACT. We show that every knot in the 3-sphere can be deformed into a hyperbolic
knot by a single crossing change without changing knot concordance class and Alexander
invariant. Furthermore, each knot has infinitely many such crossing changes producing
distinct hyperbolic knots.

1. INTRODUCTION

Following Thurston’s uniformization theorem ([14], [8]) and the torus theorem ([3], [4])
every knot K in the 3-sphere S® can be classified as:

e a torus knot, i.e., a knot which can be placed on a standardly embedded torus,

e a satellite knot, i.e., a knot whose exterior contains an incompressible torus which
is not boundary parallel, or

e a hyperbolic knot, i.e., a knot whose complement admits a complete riemannian
metric of constant curvature —1 of finite volume.

Among these hyperbolic knots are most important; and we empirically know that ‘most’
knots are hyperbolic. It is conjectured in [1] that the proportion of hyperbolic knots among
all prime knots with minimal crossing number less than n approaches 1 as n — oo. In this
paper, we demonstrate the abundance of hyperbolic knots by showing that every knot is
‘close’ to infinitely many hyperbolic knots in terms of crossing change.

We regard that two knots are the same if they are isotopic in 3. For a knot K in 53,
let B,(K) be the set of knots each of which is obtained by changing at most n crossings
in a diagram of K.
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Theorem 1.1. For each knot K in S3, By(K) contains infinitely many hyperbolic knots.
In particular, an arbitrary knot can be deformed into a hyperbolic knot by a single crossing
change.

In Section 3, we consider torus knots and satellite knots, and raise some questions.

2. PROOFS

A (2-string) tangle is a pair (B,t) where B is a 3-ball and ¢ is a pair of disjoint arcs
properly embedded in B. We call (B, t) a trivial tangle if there is a homeomorphism from
(B,t) to (D x I,{z,y} x I), where D is a disk containing z and y in its interior. A tangle
(B,t) is said to be prime if (i) every 2-sphere in B meeting ¢ transversely in two points
bounds a 3-ball in B cutting ¢ in an unknotted spanning arc, and (ii) there is no properly
embedded disk in B which separates the two arcs of ¢. A tangle (B, t) is said to be simple
if it is prime and B — ¢ contains no incompressible tori. Let K be a knot in S3. Suppose
that S is a 2-sphere meeting K transversely in four points and separating S3 into two
3-balls B, and B,. Then (B;, B; N K) are tangles, and we say that K is decomposed into
the union of two tangles (B;, B; N K), where ¢ = 1,2.

Proposition 2.1. Any knot K in S® is decomposed into the union of a simple tangle and
a trivial tangle.

Proof. This follows from Myers (10, Theorem 1.1]. Take an arc c in S° such that cN K =
Oc, and ¢’ = cN E(K) is a properly embedded arc in E(K) = S — intN(K); then
E(K) — intN(c’) 2 S — intN(K Uc). By [10, Theorem 1.1] we can choose ¢ so that
S3 — intN(K U c) is boundary-irreducible and contains no incompressible tori. Let us
choose a small regular neighborhood B; of ¢ in S? so that (B;, By N K) is a trivial tangle.
The 2-sphere 0B, decomposes K into the union of the trivial tangle (B;, By N K) and the
tangle (B,, B,NK) where B, = S3—intB;. Since S —intN(K Uc) = B, —intN(B,NK),
(B2, B, N K) is a simple tangle. O(Proposition 2.1)

Proof of Theorem 1.1. By Proposition 2.1, K is decomposed into the union of a trivial
tangle (B,, BiNK) and a simple tangle (B,, B;NK). Isotope the trivial tangle (B;, B;NK)
fixing its boundary as in Figure 1.
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FIGURE 1
Let K, be the knot obtained from K by changing a crossing of K as described in Figure

2.

crossing
change

—

(By, B,NK) (B4, BiNK,)

FIGURE 2

The tangle (B, B, N K) is changed to (B;, By N K,). Soma (13, Lemma 3] proved that
(B1, B N K,) is a simple tangle. It follows that K, is decomposed into the union of two
simple tangles (B;, B; N K,), ¢ = 1,2, where (B,, B, N K,,) = (B, B N K). Applying
(13, Theorem 1|, we see that K, is a simple knot, i.e., every incompressible torus in the
exterior is boundary parallel. Thus K, is a torus knot or a hyperbolic knot. The first
alternative implies that a torus knot is decomposed into the union of two prime tangles,
but this contradicts [2, Theorem 2.1]. It follows that K, is a hyperbolic knot.
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It remains to show that { K, },ez contains infinitely many distinct knots. Note that K,

is obtained from K, by twisting n times along the disk D in Figure 3.

n twist
along D

(B, ByNK,) (By, B;NK,)

FIGURE 3

Claim 2.2. The circle 0D does not bound a disk D' in S® which intersects Ky in at most

one point.

Proof. Since the algebraic intersection number of Ky and D is zero, it is sufficient to show
that there is no disk D' satisfying D' = 8D and D'N K, = (). Suppose for a contradiction
that we had such a disk I)’. Let A be an obvious annulus in B, — B; N K connecting 8D
and an essential simple loop in B, — intN(B; N Ky). Then the existence of a (possibly
singular) disk AU D" would imply the compressibility of F' = 0B, — intN(B; N Kj) in
E(Kj). This is a contradiction. O(Claim 2.2)

By applying [7, Theorem 3.2] we see that {K,},cz consists of infinitely many knots.
This completes the proof of Theorem 1.1. O(Theorem 1.1)

Remark. In Theorem 1.1 we can choose a crossing change of K so that the resulting
hyperbolic knot is concordant to K and has the same Alexander invariant as /. In fact,
by [12, Lemma 3.3] the crossing change given in the proof of Theorem 1.1 does not change

knot concordance class and Alexander invariant.

3. QUESTIONS

In contrast to hyperbolic knots, torus knots are scattered.
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Proposition 3.1. For any knot K, B;(K) contains only finitely many torus knots. If
K is a knot such that the signature o(K) is 0 and the unknotting number u(K) is 3 (the
connected sum of three copies of the figure eight knot is an ezample), then B,(K) contains
no torus knots.

Proof. We use the following theorem of Kronheimer and Mrowka [6]: for (p, g)-torus knots
T,q, Where [p| > q > 0, u(T}g) = w
B;(K), then |u(T,4) — u(K)| < 1. By the above fact there are only finitely many pairs

. If a torus knot T}, is contained in

(p, q) satisfying this inequality. The first assertion is thus proved.

Let K be a knot with u(K) = 3 and o(K) = 0. If T,, were contained in B,(K),
then u(T,,) = 2,3, or 4. Then Kronheimer and Mrowka’s theorem implies that (p,q) =
(£4,3), (£5,2), (£5,3), (£7,2),(£9,2). None of the corresponding torus knots has sig-
nature 0 or £2; see the table on p. 297 of [5]. Since o(K) = 0, this contradicts the fact
that a single crossing change to any knot changes its signature by 0 or +2 [9].

Let K be the connected sum of three copies of the figure eight knot. The minimal
number of the generators of the Alexander invariant of K is three. Thus, u(K) > 3 by
(11]. It follows u(K) = 3 by inspection. O(Proposition 3.1)

For each knot K, B,(K) surely contains a satellite knot. For example, we obtain a
satellite knot by pulling a subarc of K around in a knotted manner and then crossing K
once. However, the minimal crossing number of the resulting satellite knot seems to be
bigger than that of K. In general, a minimal crossing diagram will not admit a single
crossing change yielding a satellite knot. We here raise the following questions.

Questions. (1) Let K be a knot with minimal crossing number large enough. Does
Bi(K) contain a hyperbolic knot (a satellite knot) whose minimal crossing number does
not exceed that of K7

(2) Let K be a prime, satellite knot. Does a single crossing change to a minimal crossing
diagram of K yield a hyperbolic knot?

Remark. On minimal crossing diagrams of some torus knots and some composite alter-
nating knots, no single crossing change yields a hyperbolic knot.

(3) For any knot projection G of n crossings, we can obtain 2" knot diagrams by indicating
over-under relation at each crossing point in G. Let f(G) be the proportion of diagrams
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representing non-hyperbolic knots among all the knot diagrams obtained from G. For any
number r with 0 < 7 < 1, g(r,n) denotes the proportion of knot projections of n crossings
with f(G) > r among all knot projections of n crossings. Then does g(r,n) tend to 0 as
n — oo?

Acknowledgements- We would like to thank Jeff Weeks. Question (3) is inspired by
his comment.
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