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O-GRAPHIC STUDY OF CLOSED 3-MANIFOLDS

YUYA KODA

INTRODUCTION

In (1, 2], Benedetti and Petronio defined a finite graphic presentation of an oriented
3-manifold called o-graphs. In this brief survey, we review properties of o-graphs of
closed oriented 3-manifolds. In particular, we focus on an analogy between o-graphs and
knot diagrams. Refer [2] for terminology about branched spines and o-graphs. Note that
the construction and decomposition of closed oriented 3-manifolds in terms of o-graphs,
explained in this paper, play a key role for the computation of quantum invariants, e.g.
colored Turaev-Viro invariants of knots in a closed oriented 3-manifold.

We remind that if P is a branched spine of an oriented M then P also carries an
orientation, defined as a screw-orientation along the edges of the singulatiries S(P) of P
with a natural compatibility at vertices (see [1]). Conversely, if P is a branched standard
polyhedron, then P is orientable, and the manifold it defines is oriented. In addition, P
can be described by two additional structures on the 4-valent graph S(P):

(1) An embedding in the plane of the neighbourhood of each vertex, with two oppo-
site strands marked as being over the other two, as in knot projections;

(2) Orientation of each edge such that the orientations of opposite edges match
through the vertices.

A 4-valent graph with these additional structures is called a normal o-graph. Figure 1.3
illustrates an example of a normal o-graph. Note that normal o-graphs are special kind
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FIGURE 1. A normal o-graph.

of o-graphs. It was shown in [1] that any normal o-graph defines an branched standard
polyhedron, whence an oriented manifold, and that two normal o-graphs defining the
same branched polyhedron are related by certain moves called C-moves. Define the first
and the second vertex of an edge of a normal o-graph using the orientation.
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FIGURE 2. A normal o-graph of S3.
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FIGURE 3. Branched spines and normal o-graphs.

1. CONSTRUCTIONS AND DECOMPOSITIONS OF NORMAL O-GRAPHS

In this section, we investigate operations of closed oriented 3-manifolds, e.g. connected
sums and torus decompositions, by means of normal o-graphs.

1.1. Normal o-tangles.

Definition. A graph I is called an normal o-tangle of n components if

(1) The degrees of all but 2n vertices vy, vs,...,vz, of I' are 4, and the those of the
2n distinguished vertices are 1;
(2) T'is equipped with the following structures:

(a) A pairing {vg;—1,v2i}, i =1,2,...,n of the degree 1 vertices;

(b) An embedding of T" in the plane of the neighbourhood of each vertex, with
two opposite strands marked as being over the other two, as in knot projec-
tions;

(c) Orientation of each edge such that the orientations of opposite edges match
through the vertices and that one of {vgi_1,v2:}, i = 1,2,...,n, is the first
vertex of the unique edge connecting it and the other is the second one of
the unique edge connecting it.

We defined the normal o-tangles I'z, T'g, I';, I'g of 2 components and a normal o-
tangle I'c of 1 component as shown in Figure 5. For each word w = X;X5--- X, of
letters L, R, L or R, we define a normal o-tangle T'yof 1 component, called a tail with
respect to w, by the following inductive manner:

For a letter X; of length one, the normal o-tangle T, of 1 component is defined by
gluing the end points 1,2 of I'c to the end points 3,4 of I'x,, respectively. Assume the
piece of an o-graph I'x, x,...x;_, is constructed. Then the piece T'x, x,...x; is defined by
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FIGURE 4. The normal o-tangles 'y, I'g, ', I'g and T'c.

gluing the end points 1,2 of Tx,x,--x; to the end points 3,4 of I'x;, respectively, see
Figure 5.
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FIGURE 5. The tail Tx, x,---x,-

For a pair of mutually coprime positive integers (p,q), p > ¢ > 0, we define a word
w(p, g) of letters L, R, L, R so that

. L@ Ro2 [03 ... [an-2R%n-1 [8n (p: odd)
w(p,q) == L[5 R%2 [83 ... Ron-2[0n-1 Ro» (p: even) '

where

Q/P=[al,a2,--~>am1] = 1

et
In the following, we denote the normal o-tangle ﬁ,,(p,q) of 1 component with respect to
the word w(p, q) simply by I'(p q).

1.2. Connected sums. Given diagrams of two knots K; and K in the 3-sphere. Then
a diagram of the connected sum K #K> of K; and K is obtained only in tems of their
diagrams. We have an analogous fact on normal o-graphs. Let I'; and I'; be normal
o-graphs of closed oriented 3-manifolds M; and M>. Consider the two normal o-graphs
I'; and 'y are on a plane and suppose these graphs are disjoint. Find a rectangle in the
plane where one pair of sides are edges of each o-graph but is otherwise disjoint from
the o-graphs and so that the edges on the sides of the rectangle are oriented around the
boundary of the rectangle in the same direction. Replace the o-tangle of 2 components
lying on a neighborhood of the rectangle as shown in Figure 6. Denote by y1#I'2 be the
resulting normal o-graph. :
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FIGURE 6. Connected sum.

Theorem 1.1 ([8]). The o-graph T'y#TD's is of the closed oriented 3-manifold My# M.

1.3. Torus decompositions and Dehn fillings. Let M be a connected, compact,
orientable 3-manifold such that OM is a torus. A slope on &M is an isotopy class of
unoriented, essential, simple closed curves in M. A slope r determines a first homology
class Hy(0M), well-defined up to sign, obtained by orienting a representative curve for
r and considering the homology class of the associated 1-cycle. Conversely, any element
of H1(OM) can be represented by a nonseparating, oriented, simple closed curve. This
curve is well-defined up to isotopy, and so corresponds to some slope r on M. We use
the symbol o(r) to represent either of the two homology classes in H; (0M) associated to
a slope r. Fix a slope 7 on M and let M(r) denote the manifold obtained by attaching
a solid torus to M in such a way that the meridional slope on the boundary of the solid
torus is identified with r. We say that M(r) is the Dehn filling M along OM with slope
r. It is well-known [13, 10] that any closed orientable 3-manifold results from filling the
exterior of some link in the 3-sphere.

Recall that a graph is said to be 2-connected if is not connected after removing ap-
propriate two edges. For a graph G, we denote by V(G) the set of vertices of G, and by
E(G) the set of edges of G. Also, for a vertex v of G, we denote by degg(v) the degree
of v in G, as usual.

Lemma 1.2. A connected 4-regular graph is 2-connected.

Proof. Let G be a connected 4-regular graph. Assume that G is not 2-connected. Then
there is an edge e such that G \ e has two components G and G, and we have

2-#E(G1)= ) degg (v) =4-#V(G) - L
veV(Gh)
This is impossible. O

By the proof of above lemma, we see that if a 4-regular graph is k-connected for an
odd number k € N, then it is also (k + 1)-connected.

Definition. We say that an o-graph is decomposable if it is not 4-connected. If an o-
graph I' is decomposable, there exists an embedded circle on the plane which intersects
I" transversely twice. We call this circle a decomposing circle for T'.

Note that a decomposing circle C for I' separates I' into two normal o-tangls of 1
component.

Lemma 1.3. Let (S; e, B) be a Heegaard diagram of a closed 3-manifold M. If there is
a separating simple closed curve v C S such that
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(1) v is in general position with respect to aU B;

(2) any=06;

(3) there are two integers 1 < i < j < g such that #(B; Ny) = #(B; N7y) =2 and
that B Ny =0 for k #1,7;

(4) if we set B; Ny = {p1,p2} and B; Ny = {q1,q}, they appear, without loss of
generality, in the order as p1,q1,p2,q2 along the loop v, i.e. 7y intersects B; and
B; alternatively, and

(5) at the points p1 and p (resp. qi and q2), v and f; (resp. B;) intersects with
different signs,

then there is a torus T embedded in M such that TN S = 1.

Proof. Since the simple closed curve -y does not intersect ¢, v bounds a 2-disk E4 in the
handlebody H,.

Consider the handlebody Hg. Since v intersects §; and §; twice, respectively, v
separates f3; into two arcs a; and ag, and §; into by and by. Let ot and a~ be components
of N (B;; S)\y corresponding to the arc a;. Let bt and b~ be components of dN(B;; S)\ v
corresponding to the arc b;. Due to the conditions (4) and (5), the union

v =(y\ (N(8;S)UN(B;;S))) Uat Ua~ UbT Ub~

is a simple closed curve on the sphere 8(Hg \ Y_; D3, ), and hence it bounds a disk Eg
in Hg \ ) Dg,-

The disk Eg can be regarded as a properly embedded disk in Hg. Now, identifying
the boundary arcs at with o~ and b with b~ by naturally retracting the neighborhood
N(Bi; S) and N(B;; S) to B; and f;, respectively, we get a once punctured torus T such
that T = v by condition (5). Then the union Eq U T}y becomes a required embedded
torus. ]

As a corollary of the above Lemma 1.3 and Theorem 5.14 in [8], we have the following.

Theorem 1.4. Let T be a normal o-graph of a closed 3-manifold. Assume that T is
decomposable. Let C be a decomposing circle. Let T’y and 'y be normal o-tangle obtained
by splitting T along C. Then there exists an embedded torus T satisfying the following
properties:
(1) T separates M into two compact 3-manifolds M, and Mo;
(2) For each i € {1,2}, there exists a basis {71,72} of Hi(0M;) such that filling I';
by a tail T, 4) gives a normal o-graph of M;(r), where r is a slope on OM; with
a(r) = pn +qye; ond
(8) The torus T is a union of orbits of the flow carried by a flow-spine which has the
o-graph T'.

Remark that the first assertion of the above theorem is announced by Kouno in {9] in
the category of almost-special spines. The above observation insists that we can compare
a piece of o-graphs with two end points to a tangle of knots. Actually, the operation in
Theorem 1.6 (3) corresponds to tangle surgery for knots, see e.g. [7].
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1.4. Dehn surgery on knots in the 3-sphere. Let P be a flow-spine of the 3-sphere.
For each edge e of S(P), there is 3-germs of regions of P. Two of them are on the same
side of the edge, and let R be the upper region.

F1GURE 7. The region R.

Let e(K) be the knot such that KNP = K NInt R and K N P is a single transverse
intersection.

Theorem 1.5. For an arbitrary knot K € 53, there is a flow-spine and its edge e such
that K is ambient isotopic to e(K).

Theorem 1.6. Let I' be a normal o-graph of the 3-sphere. Let e be an edge of I'. Let
Le be a normal o-tangle of 1 component obtained by cutting T' at an interior point of e.
Then there exists a basis {y1,72} of H1(ON(K)) such that filling T, by a tail Lpq) gives
a normal o-graph of K(r), where v is a slope on ON(K) with o(r) = py1 + q7e.

The above theorems implies that any Dehn surgery along a knot can be interpreted
as ‘a ‘simple” tangle surgery of an o-graph.

1.5. Seifert fibered 3-manifolds. Let g be a non-negative integer and b be an integer.
Let (p1,q1), (P2, 42),- .., (Pr,qr) be pairs of mutually coprime integers such that 1 < p;
and 0<¢ <o lii=1 200051

Assume that g 47 > 2. Prepare g+ r — 2 copies 'y, I'%,...,I%"" ™2 of the o-tangle
I's and g copies I'}.,T%,...,I'%. of the o-tangle 'y, where the o-tangles I's and 'y are
depicted in 8. First, attach the o-tangle I'; to the boundaries of the o-graph 'k so that
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FIGURE 8. The normal o-tangles I's and I'r.

the degree one vetrices 1 and 2 of 6F§ match the vertices 1 and 2 of 8T',. For odd k with
1 < k < r, attach the o-tangle I'p, g,y to the o-tangle Ik so that the degree one vertices
3 and 4 of 0T’y match the vertices 1 and 2 of 8y, 4,). For even k with 1 < k < r, attach
the o-tangle I'(, p,—q,) to the degree one vertices of the o-tangle T'% in the same manner
as above. For 1 < k < g — 2, attach the o-tangle 1"’7°~ to the degree one vertices of the
piece I';** in the same manner as above. Attach I‘gfl and T'}. to the degree one vertices
3,4 and 5,6 of the o-tangle 1"’;-, respectively, in the same manner as above. Note that
now we have g +r — 2 components of o-tangles I'1, ', ..., [g4r—2 such that Iy contains
1'"§. For even k with 1 < k € g + r — 2, change the fixed direction of the edges of the
o-tangle T'x. Now we get an o-graph by attaching the degree one vertices 3,4 of the
o-tangle Tt to the vertices 1,2 of the o-graph Iy for 1 < k< g+7 -2 We denote it

bY T(gibi(p1.01).(p2:2)r(pr ) ~ L
If g + r < 2, attach the o-tangle I'; to the degree one vertices of the o-tangle .
Moreover, attach the rest of the o-tangles I'(,, o,y and copies of I'7. In particular, if

g+ < 2, attach the copies of I'c to all the left degree one vetices of f_lg.

Theorem 1.7 ([12]). The 0-graph T'(g:(p1,01),(p2:g2),.-n(pror)) 5 OF 6 closed oriented Seifert
fibered 3-manifold with Seifert parameter S(g; b; (p1,q1), (p2,42) -, (Prar))-

The construction of an o-graph of a Seifert fibered 3-manifold in Theorem 1.7 gives a
good example of Theorem 1.6 (i). Recall that the pieces of an o-graph in the construction
correspond to either (trice punctured sphere) x S*, (once punctured torus) x S!ora
fibered solid torus. When we connect two pieces, the connection is made by two edges
which separate the resulting o-graph and this process corresponds to a gluing along
boundary tori. This is a special case of Theorem 1.6.

Fig. 9 illustrates the same o-graph as Fig. and embedded tori T1,T%,T3,74,T5,T6.
The tori Ty, T, T3, Ts bound a solid torus in the manifold S(1;0;(2,1), (3, 1)), in fact,
they consist of fibered in fibered solid tori. The torus Ty also bounds a solid torus of
type (2,1). The torus Ts separates the manifold $(1;0;(2,1), (3,2)) into a Seifert fibered
manifold with base surface $2 and 2 singular fibers and T?% x S*.

2. INVARIANTS VIA NORMAL O-GRAPHS

In this section, we formally define two well-known invariants, Heegaard genera and
fundamental groups, of closed oriented 3-manifolds in terms of o-graphs.
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FIGURE 9. Embedded tori in P(l;o;(g‘l)’(;;,g)).

2.1. Heegaard genus. A diagram D of a knot K C S° is a projection of K into a
plane such that at most two strands of the knots intersect at any point and that there
are finitely many such intersections. By convention, at each crossing of two strands, one
removes a segment of the projected image of the lower strands to convey relative height
information. These breaks make the diagram a set of disjoint arcs.

Definition. An arc c is a piece of a knot projection or an o-graph which begins at one
under-crossing and ends at the next one moving along the the knot diagram or the o-
graph. An arc c is called an overbridge if it contains at least one over-crossing in between
the two endpoints, which is under-crossings.

As the bridge number of a diagram of a knot K is defined to be the number of
overbridges included in the diagram, the block number of an o-graph of a closed orientable
3-manifold M is defined to be the number of overbridges included in the o-graph. Then
the block number BL(M) of a closed oriented 3-manifold M is defined to be the minimum
of the block numbers of all o-graphs of M, while the bridge number of a knot K is
defined to be the minimum of the bridge numbers of all diagrams of K. It is proved that
BI(S3) =1 and BI(S? x S!) = 0.

Theorem 2.1 ([4, 8]). Every closed orientable 3-manifold M except S? x S! and $3
satisfies BI(M) = HG(M).

2.2. Fundamental groups. Joyce [6] and Matveev [11] independently introduced an
invariant of knots called the knot quandle and the distributive groupoid, respectively.
The knot quandleis defined by associating a quandle structure to a knot. A quandle is
a set () equipped with a binary operation o : Q x @ — @ satisfying the following three
axioms:

(1) Forallz € Q,zoz =1z;

(2) For all y,z € Q, there exists a unique element z € A such that z oy = z;

(3) Forall z,y,z € Q, (zoy) oz = (zo2) 0 (yo2).

Let D be a diagram of an oriented knot K. Note that an orientation of the knot

naturally define the orientations of these arcs. Recall that two diagrams represent the

8
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same knot if and only if they are connected by a finite sequence of Reidemeister moves.
Let Qi be the set of arcks of D. For each crossing, define a retion x oy = z as shown in
Fig. 10.

oy z

y

FIGURE 10. Knot quandle.

It is shown that Qg is in fact invariant under Reidemeister moves, see Figure 11. This
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yoz
v 2 v z

FIGURE 11

implies that the Qg is a knot invariant.

Given an o-graph of a closed 3-manifold, we can obtain its fundamental group following
the argument of the knot quandle. Let I be an o-graph of a closed 3-manifold M, G be
the free groups generated by the elements corresponds to the labels on the arcs of I' and
R be relations of elements of G given as shown in Fig. 12.

y

FIGURE 12

Proposition 2.2. Under the above setting, we have m (M, *) = (G | R).
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Note that we have an analogous argument on the invariance of this group under
fundamental moves for o-graphs.
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v |(=z-p) 5 r__ 7
Y z z Y
FIGURE 13

Ezample. Fig. 14 shows an o-graph of the gquaternion space, which is 3-fold cyclic
branched covering of 3 branched over a trefoil knot.

T

FIGURE 14

Then we can easily obtain the presentation (z,y,z | zy = 2,yz = ,2z = y) of its
fundamental group following the rule shown in Fig. 12.
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