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Abstract

Reidemeister-Turaev torsion is an invariant of a 3-manifold M equipped with a Spin°®-
structure, one representation of which is a homology class of a non-singular vector field
on M. In this paper, we introduce a way to represent a branched spine, which can be re-
garded as a combinatorial presentation of a Spin°-structure on a 3-manifold, as a Heegaard
diagrams with a joining system, and explain an accessible way to compute the invariant
using this presentation.

Introduction

The theory of branched spines of 3-manifolds was introduced by Benedetti and Petronio in
(2] as a combination of the two classical concepts of simple spine and branched surface for
combinatorial encodings of 3-manifolds with non-singular vector field. Notice that a special
class of them, which is called a flow-spine, was, in fact, formerly introduced by Ishii in [7] and
it plays an important role in the study of closed 3-manifolds with non-singular vector field, see
also [2, Chapter 5-6).

A branched spine P of a 3-manifold M is represented as a faceted surface together with an
orientation-reversing face-pairing ¢ on it by cutting M along P and watching its section, see
[2, 6] for details. In this paper, we introduce a new way to represent branched spines, punctured
Heegaard diagram, which is defined in a similar mannar as a Heegaard diagram of a compact
3-manifold. In the case when P is a flow-spine of a closed 3-manifold M, the corresponding
punctured Heegaard diagram is, indeed, a Heegaard diagram of M with an extra information,
which we call a joining disk.

In {12}, Turaev refined the Reidemeister torsion as an invariant of manifold equipped with
Spin°-structure, the invariant is called the Reidemeister- Turaev torsion. Turaev’s reformulation
of Spin®-structure allows us to regard it as a homology class of non-singular vector fields, and
Benedetti and Petronio [3] introduced a way to calculate the Reidemeister-Turaev torsion of
the Spin°®-structure represented by a branched spine. In [9}, we developed their way to compute
Reidemeister-Turaev torsion in particular when P is a flow-spine using the Heegaard splitting
which a flow-spine naturally induces. In the present paper, this idea is explained in terms of
punctured Heegaard diagrams and it provides a quite easy way to calculate the invariant.
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We introduce a calculus for punctured Heegaard diagrams corresponding to regular moves
for flow-spines, see [8]. A new move, which punctured Heegaad diagrams naturally carry, is
also discussed.

1 Reidemeister-Turaev torsion

Let F be a field and let E be a n-dimensional vector space over F. For two ordered bases b =
(b1,.--,bs) and ¢ = (c1,...,¢n) of F, we write [b/c|] = det(a;;) € F*, where b; = i1 BijCie
The bases b and ¢ are said to be equivalent if [b/c] = 1.

Let C = (0 LN Cm Oty Cn-1 2=y &, Co LSRN 0) be a finite dimensional chain
complex over F. For each 0 < i < m, set B; = Im 8;, Z; = Ker 8;_, and H; = Z;/B;. The
chain complex is said to be aecyclic if H; = 0 for all i. Suppose that C is acyclic and C; is
endowed with a distinguished basis ¢; for each {. Choose an ordered set of vectors b; in C; for
each i =0,...,m such that 8, (b;) forms a basis of B;_,. By the above construction, 8;(b;4;)
and b; are combined to be a new basis 8;(bi+1)b; of C;. With this notation, the torsion of C is
defined by o

7(C) := :[I:[ai(beﬂ)bi/c:'](_l)i+l € F*.
=0

Let M be a compact connected orientable smooth manifold of an arbitrary dimension. Let
X be a CW-decomposition of M, X — X be its maximal abelian cover and F be a field. We
can equip X with the CW-structure naturally induced by that of X, and then we regard C,(X)
as a left Z[r1(X)]-module via the monodromy.

Let {e¥} be the set of all oriented k-cells in X. When we choose a family {¢¥} of cells of X
and orient and order these cells in arbitrary way, it becomes a free Z[H,(X)]-basis of Ci(X).
In this way, we can regard C. (X) as a chain complex with basis.

Let ¢ : Z[m(X)] = F be a ring homomorphism. If the based chain complex C?(X) =
F ®, C.(X) over F is acyclic, the Reidemeister torsion of X is

(M) := 7(CE(X)) € F*/  o(H\(M)).

Otherwise, set 7°(M) =0€ F.

Let M be a closed smooth 3-manifold. Two non-singular vector fields V;,V, on M are
called homologous if there exists a closed 3-ball B C M such that the restrictions of V;,V; to
M\Int(B) are homotopic as non-singular vector fields. A Spin°-structure is a homology class
of non-singular vector fields. We denote by Spin°(M) the set of Spin°-structures on M. The
action of Hy(M) to Spin°(M) is understood using the obstruction theory, see {12]. Turaev’s
idea is that each Spin°-structure [V] determines the basis (as a set) of C¥(M). Then we can
define the torsion 7¢(M,[V],0m) € F* of homologically oriented 3-manifold equipped with
Spin®-structure, which we call the Reidemeister- Turaev torsion, see [3].



2 Heegaard diagrams and punctured Heegaard diagrams

By a Heegaard diagram we means a triple (S;a, ) where S is a closed, connected, orientable
surface and a = J[L, a; and 8 = |J, B: are compact 1-manifolds on S.
A Heegaard diagram gives rise to a 3-manifold

M=M(S;e,8)==Sx[-1,1] |J (2-handles) |J (2-handles)
ax{-1} Bx{1}

obtained by adding 2-handles Hy,,...,H,,, and Hg,,...,Hs, to S x [-1,1] along the curves
ay x {~1},...,am x {1} and B; x {-1},...,B8m x {—1}, respectively. We denote M the
manifold obtained by adding 3-handles along all resulting 2-sphere boundary components of
M. The decomposition of M or M by § x {0} is the associated Heegaard splitting of M and
the genus of S is called the genus of the splitting. We will denote the core of Ha, (resp. Hg,)
by Da; (resp. Dg,).

A Heegaard diagram is said to be ordered if the components of a and § are ordered, re-
spectively. An oriented Heegaard diagram is an oriented triad (S;a, 3), and determines an
oriented splitting by the convention that the positive normal to S in M points toward the
B-side of the splitting. An oriented Heegaard diagram (S; a, 8) with a fixed point p; € Bi\a
for each B; is said to be based. We often denote an ordered, based Heegaard diagram by
(S5 {ail2y, {Bi}i=1; {Pr}i=1)- A system of pairwise disjoint oriented simple closed curves
v =, v on S is called a dual system of B if it satisfies that +; intersects §; transversely
once at the point p; in the positive direction shown in Figure 1 and «v; N 8; = @ when i # j.

Figure 1: The positive intersection with a dual loop

P

pi B;

Given an oriented Heegaard diagram (S;a,8). Let J = U§=1 Ji be a disjoint union of
components of S\(aU 3). Then it is said to be joining if 87 is a disjoint union of simple loops
and 8J U B; is an arc for j = 1,...,g on which point J lies on the right-side. In the case when
l =1 and J; is a disk, we call J; a joining disk. Figure 11 illustrates examples of joining disks.

REMARK 2.1. If we find a disjoint union J = U',.=l Ji of components of S\(a U 3) such that
dJ is a disjoint union of simple loops, 8J U B; is an arc for j =1,...,g for an non-oriented
Heegaard diagram (S;a, 8), we can orient the diagram to make J joining. we call J a joining
union for the non-oriented Heegaard diagram.

We call a(n) (oriented) Heegaard diagram (S;a, ) with joining union J a punctured Hee-
geard diagram and denote it by (S;a, §; J).
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A punctured Heegaard diagram gives rise to a 3-manifold M = M(S;a, 8; J) obtained by
adding 2-handles H,,,...,H,,, and Hg,,...,Hg, to (S\J) x [-1,1] along the curves a; x
{-1},...,am x {-1} and B, x {-1},...,Bm % {—1}, respectively. We denote M the manifold
obtained by adding 3-handles along all resulting 2-sphere boundary components of M.

LEMMA 2.2. Let D be a joining disk of ¢ Heegaard diagram (S; a, 8) and a and 3 respectively
bound complete systems -of meridian disks of the closures of the corresponding components of
M(S;0,B)\S. Then M(S;a,B) = M(S;a, ;D).

PROOF. It is clear from the fact that taking a connected sum with the 2-sphere does not
change the homeomorphism type of a surface. 0O

3 A combinatorial computation of Reidemeister-Turaev
torsion

Given a ordered, based Heegaard diagram (S; {a:}]_1, {8}5=1; {Px}i=,) of genus g of a closed
3-manifold M. Then D, determines an element z; € m(M,*) and B; determines r; =
7i(Z1,...,3,4) € m (M, *) starting at the point p; and following the oriented loop B;, for each
i,j=1,...,9. Moreover, if we choose a dual system {¥1,...,%,} of {B1,-..,8,}, 7 determines
y; € m1(M, ) in the same manner. Let p: Z[m; (M)} — Z[H1(M)] be the canonical projection
and denote [2] = p(2) for z € w1 (M).

PROPOSITION 3.1. Let ¢ : Z[H,) = F: be a ring homomorphism and
0 - C{(M) —)C"°(M) C’“’(M)—)C"(M)—)O

be an acyclic based finite chain comples over a field F. Then, for some base of CY, 8%, 8f and
OY respectively have the following matriz presentations:

e(lys)) - 1 ’ ((p( g—z]))lzuzy and ( elaa]) =1 -+ o(lz,]) -1 )

COROLLARY 3.2. Let the twisted chain complex Cf(M) be acyclic. Then there ezist two
integers 1 <3 k,1 < n such that

w(ln]) -

det Bkg
RN EDN

where By is the matriz obtained by removing k-th row and I-th column from the matriz

(cp (g—t . We call this value the Reidemeister-Turaev torsin of the ordered, marked
J 1<i,j€n

Heegaard diagram (S; {ai}0_y, {B8;}oyi {Pr}i=y)-

™(M,V)) =



4 Punctured Heegaard diagrams and branched standard
spines

Let M be a compact orientable 3-manifold. P C M is called a branched surface if P is locally

modeled one of the following 3 models:

=

Figure 2: Local pictures of a branched surface

In this paper, all branched surfaces are assumed to be transversely oriented, this is the
natural generalization of the 2-sidédness of embedded surfaces. Denote L a branched locus of
P. We call a component of P\L a face of P. Let S be a face of P. If all branch directions
along 85 point out from S, P\S is still a branched surface.

T/ AF——FR

Figure 3: Removable face

One can regard N(P) as a interval bundle over P. The boundary dN(P) decomposes into
two parts: the endpoints of the fibers, 8, N(P), and the rest, 8,N(P), see [5, 10] for more
details about branched surfaces.
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Figure 4: Regular neighborhood of a branched surface

P is called a branched spine if M collapses onto P in the case when M # 0. For a closed
M, P is called branched spine if M\ P is homeomorphic to the open 3-ball. A branched spine
P is naturally stratified as V(P) C S(P) C P, where V(P) is a set of vertices and S(P) is
the singular set. A branched spine P is called a standard if this stratification induces a CW
decomposition of P (that is, there is no hoop, etc.), see [2] for a precise definition. A branched
spine P is called a flow-spine if 8, N(P) is an annulus. For a flow-spine of a closed 3-manifold,
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one can extend the I-fiber of the regular neighborhood of the spine to the ambient 3-manifold.
In this way, a(n) oriented flow-spine P, determines a vector flow V(P) up to homotopy of
non-singular vector flows V on the manifold. '

THEOREM 4.1 (IsH1I 7]). Every homotopy class of non-singular vector flows is carried by
a flow-spine.

For each oriented Heegaard diagram (S; a, 3) of the manifold M, we can associate an oriented
branch structure with B := SU (| Da,) U (U Dg,) so that at each point on a U 3, the branch
direction points leftword along the loop a U 3, see Figure 5.

~

Figure 5: Branch direction around a; and §;

Let J be a joining union of (S;a,8). Then J is a removable faces of a branched surface B,
and hence, P = P(S;a, 8;J) := B\J is a branched surface. The following lemma is clear from
the above construction.

LEMMA 4.2. P is a branched spine of M(S;a, 8;J).

THEOREM 4.3. Every branched standard spine is obtained from a punctured Heegaard dia-
gram in the above way. moreover, every flow-spine is obtained from a Heegaard diagram with
joining disk.

PROOF. Let P be a standard spine of a compact, oriented 3-manifold with boundary M.
We may identify a collar neighborhood of M with OM x [—1,0] (OM x {0} = 8M). Then
the collapse induces an essentially unique retraction = : M\(OM x (-1,0]) = P such that
M\(8M x (—1,0]) is the mapping cylinder of 7|garx{-1}- Then on the (possibly disconnected)
surface &M, the 3-regular graph 7~ (S(P)), together with the disjoint union e = e; U---Ue, C
7~ (S(P)) of circles corresponding to the annuli 8, N(P), encodes the branched standard spine
P, see [2, Page 28] for more detail. Note that we can identify M with (8M x [-1,0])/ ~ and
P with (M x {-1})/ ~, where (7(z), -1) ~ (7(y), —-1).

The circles e separates M into two classes, the black part B and the white one W. Draw
a loop C; in the neighborhood of e; such that C; Ne; # 0, C; N7~1(S(P)) C e;, C; intersects
e; transversely and C; = e; in the neighborhood of e;. Let Sp (resp. Sw) be the closure of
the union of components of M\ |J; C; corresponding to the black area B (resp. the white
area W). Then Sp\B is a disjoint union of disks Dy,...,D} identified by = with disks
D;y,...,D; C B, respectively. Set § = 8(Sp x [-1,0])/ ~, ai = (8D}/ ~) C S and
a=J;a. S=08(Ss x[-1,0])\(Ss x {—1}). Now, the remaining part P\n(Sg) = #(Ss\B)
is a set of disks Dj,...,D;,. Set 8; = 8D} and 8= J; B;.




Now we claim that (S;a, 3;J) is a punctured Heegaard diagram presenting P C M. The
fact that J is a joining system is clear from the above construction. In fact, each compo-
nent of C; U Sp is a subarc of some slop a; and each of C; U Sy is a subarc of some f.
(SUU; Di) U (U; D)\ = S\TU(U; D) U(U; D;) = «(B) = P. M(S;a,8;)=M. O

COROLLARY 4.4. For a closed 3-manifold, every homotopy class of non-singular vector flows
is carried by a Heegaaard diagram with joining disk. In particular, every Spin®-structure is
carried by a Heegaaard diagram with joining disk.

Proofr. This immediately follows from Theorem 4.3 and Theorem 4.1. O
We denote V(S;a, 8; D) := V(P(S;a,3; D)).

ExXAMPLE 4.5. Figure 6 (i) illustrates the unique black area (, which is homeomorphic to
the disk) for a flow-spine of the 3-manifold M obtained by the 0-surgery along the figure-eight
knot in S%. The bold line in Figure 6 (ii) shows the curve C; on 0B®, and (iii) is the resultant
Heegaard diagram. Actually, we can transform the left diagram (ii) (except the pale edges) into
(iii) by isotopy.

vy

() (ii)

Figure 6: From a DS-diagram to a Heegaard diagram

Given a Heegaard diagram (S;a, 3; D) with joining disk such that M = M(S;a, 3; D) is a
closed 3-manifold. Set [V] = [V(S;a,8; D)] € Spin°(M). The Heegaard diagram (S;a,3; D)
naturally induces a based oriented Heegaard diagram taking a base point pr on 8 UD. It
follows that the diagram induces the elements z;’s, 7;’s and y;’s in 7 (M) as in Section 2.

THEOREM 4.6. Under the same assumption for o, F, CY(M) as in Proposition 3.1, the
matriz presentations of the boundary operators 85, 87 and 85 with respect to a bases defined
by the Spin®-structure [V] are

so([ylp—l , (‘P([%D)Qiﬂg il ( o((z1]) =1 -+ w(lz,)) -1 )

w(lyg]) = 1
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PRrRoOOF. a

5 Calculus for oriented Heegaard splittings with joining
removable disk

In this section, all punctured Heegaard diagram we consider are those with joining disk and
corresponding to a closed 3-manifold. Recall that in this case, it is a Heegaard diagram of the
closed 3-manifold after capping a disk to the punctured hole. We briefly introduce the calculus
for oriented Heegaard diagrams with joining disk corresponding to the regular moves for flow-
spines [8]. We also introduce a new move, which we call a marking move, which punctured
Heegaad diagrams naturally carry.

5.1 first and second regular moves

Given a punctured Heegaard diagram (S;a,8; D) of genus g. Suppose that on the oriented
circle a; there exist successive vertices v; and v in this order such that vy € D and v ¢ D as
drawn in the left side of Figure 7.

€1
akl

Figure 7: The first regular move for punctured Heegaard diagrams

Consider to change locally the diagram as shown in Figure 7. It is easy to check following
the construction in Section 4 that this operation corresponds to the first regular move for flow
spines and the region D’ in the resulting diagram is a joining disk. We call the inverse of this
operation a first reqular move.

The operation given by the parallel argument by replacing the term o by 8 and inversing
all edge directions are also called a first regular move.



Given a punctured Heegaard diagram (S;a, 8; D). Let (S;a, 8; D) have two edges e) C §;
and e; which belong to the boundary of a region R and whose directions are coherent to the
anti-clockwise orientation of GR, see the left side of Figure 8.

Figure 8: The second regular move for punctured Heegaard diagrams

Consider to change locally the diagram as shown in Figure 7. It is easy to check that the
region D' in the figure becomes a joining disk. We call the inverse of this operation a second
regular move. .

The operation given by the parallel argument by replacing the term a by § and inversing
all edge directions are also called a second regular move.

COROLLARY 5.1. Let M be a closed 3-manifold equipped with a vector flow V. Let (S;a, §8; D)
and (S';o',3'; D) be two punctured Heegaard diagrams carrying V. Then (S';a/,8'; D') is ob-
tained from (S;a, 8; D) by successive applications of the first and the second regular moves.

PROOF. Since the above operations correspond to the first and second regular moves for
flow-spines, this theorem directly follows from [8, Theorem 2.3). ]

5.2 marking move

Given a (non-oriented) Heegaard diagram (S;a,3) of genus g. Let D and D’ be its joining
disks. The disk D (resp. D') induces orientations oo, and og, (resp. of, and o;,j) of the
slopes a; and B; (1 < i,j < g) so that D (resp. D') is removable, recall Remark 2.1. Let Ay,
(resp. Ag;) denote an oriented loop which intersects P = S;a,8; D) transversely at a single
point in D, )(resp. Dg,) and App be an oriented loop which intersects P transversely at two
points p € D and p' € D'. The orientation of these loops are shown in Figure 9 and 10. Let

{jlw'wjm} = {nIOOli ?50:1.} and {kl""’k"}={n|°pi #0'3..}.

DEFINITION 5.2. A marking move is the move from (S;a,3; D) to (S;a,8; D') where D
and D' is joining disks of the (non-oriented) Heegaard diagram (S;a, 8).
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THEOREM 5.3. The vector flow V' = V(S; a, B; D') is obtained from V = V(S; a, 8; D) by a
sequence of operations S} ..., Sf\c. 1Sxg, 10+ +15%s,, +S2p s where S denotes the Reeb
surgery along an oriented Ioop App: and S,\DD, denotes the Reeb surgery along App' between
two direction reversing operations of vector flows.

PRroOF. Recall that P is a flow-spine, to which the vector flow V(S;a, 8, D) is transversal.
Though we can add D (resp. D') to P (resp. P' = P(S;a,(3; D')} so that the resulting is still
a branched surface, (recall Figure 3), the vector flow V (resp. V') no longer remains transversal
to it.

We can assume by modifying the flow homotopically that the set of points on D to which
V is tangent is a circle C, see the left side of Figure 9.

Appr

Figmfe 9: The loop App

Let the branch directions of P and P’ around the meridian disk D,, differ. Figure 10 (i)
illustrates the branch direction and the vector flow V around D,,. The vector flow V has a
circle tangency C,,; on Dy, to the branched surface P’ as drawn in Figure 10 (ii).

Consider the vector flow V] obtained by applying the Reeb surgery along the orinented loop
Ae; to the vector flow —V(S;a, B, D), see Figure 10 (iii). Then V; = =V} produces one more
circle tangency Cj, on D,, to P' while the other parts remain unchanged. Now we can cancell
the two circle tangencies C,, and Cy,, by a homotopical deformation of the vector flow V;. Thus
V and V), intersect P\Int(D,,) from the same side and D,, from different sides.

Let the branch directions of P and P’ around the meridian disk Dg; differ. Then the vector
flow V intersects P’ around the disk D}, as in Figure 10 (iii). Thus we can apply the parallel
argument as above without inversing the flow direction.

‘ . ‘ ’

A} . A v

(U] (i (i)

Figure 10: The flow around D,,; and the oriented loop A,

After applying these operations to all D,,’s and Dj ’s around which the branch direction
of P and P’ differ, one obtains the flow W which is transversal to P’ except on the circle C on
D. Let W’ be the vector flow obtained by applying the Reeb surgery to W along Appr. Then
W' and V' coincides in a neighborhood of the branched surface P’, and they are homotopic on
M since M\ P’ is an open 3-ball. (]
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Let ¢; (resp. £;) € Hy(M) be represented by A; (resp. X}) and £pp: € Hy(M) be represented
by ADDI.

COROLLARY 5.4. The two Spin°®-structures [V] and [V'] satisfies the following relation:

V' =ltpp]- ﬁ[fau] ‘c (H[fak,-] 'C([V])) )
i=1 i=1

where ¢ : Spin®(M) = Spin°(M) is a map defined by c([V]) = [-V)].

Proor. This follows from the above theorem and the definition of the action of H; (M) to
Spin®(M). m|

ExAMPLE 5.5. The Figure 11 illustrates a Heegaard diagram (S;a, 8) of the manifold M
in Example 4.5. It is easy to check that [z,] = [z2] where [z;] and [z2] are the elements of
H(M) corresponding to o; and aq, respectively, and thus Hy (M) = {[z1]) = Z. Consider
the two joining faces D, D' and D" shown in the figure. Then the vector flow V(S;a, 8; D')
is obtained from V(S;a, 3; D) by a sequence of three Reeb surgeries R, , Ra,, and Ry, ,-
Moreover, we can check that ¢§ = 0, £, = {z;] and {pp = [z,]. Hence [V(S;e,8;D')] =
(bppreg,Lg,) - [V(S; @, B; D)) = 2[z1] - [V(S; o, B; D)].

Similarly, the vector flow V(S;a, 3;D") is obtained from V(S;a, 3; D) by a sequence of
operations Rf\az, Ry, R»\a, and Ry, -

Figure 11: Joining disks D, D' and D" on (S;a,8)

QUESTION 5.6. For any two punctured Heegaard diagrams (S;a, 8; D) and (S;a, 8'; D'),
can one transfer one to the other by a successive application of first and second regular moves
and marking moves?

6 Examples

6.1 Lens spaces

Let L(p, q) be a lens space and V)] be the Spin®-structure corresponding to a Seifert fibration
of L(p,q).
m(L(p,q)) = (= | ).
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Figure 12: A punctured Heegaard diagram of the natural flow of L(p, q)

6*’:(('—1 ) ,6‘{’:0,6&’:((—1 )
Then we get

T°(L(p,q), [V}, 0L(p,9)) = m ecC.

In [11], Taniguchi, Tsuboi and Yamashita introduced an algorithm to obtain a DS-diagram
with e-cycle starting from a Seifert data. Combining this result and our above construction, we
have the following:

THEOREM 6.1. There is an algorithm to obtain a punctured Heegaard diagram for a closed
oriented Seifert fibered manifold M with a canonical vector flow starting from a given Seifert
data.

THEOREM 6.2. We can compute the Reidemeister- Turaev torsion of a closed oriented Seifert
fibered manifold M(F;b,(p1,q1),...,(Pn,qn)) with a canonical vector flow in an algorithmic
way. :
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