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1 Introduction

Let G be a Hamilton graph (abbr. H-graph) and A be a Hamilton cycle (abbr.
H-cycle) on G. If (G,A)(i = 1,2) are such pair and if there is an automorphism
@ € Aut(G) with (A;) = Ay, we say that (G, Ay) belongs to the automorphism
class [G, Ay} of (G, A;). We denote the set of automorphism classes by {[G, A]}. So
{[G, A} = %%'(%2}. To investigate {[G, A]} we say a knot theory in the H-graph G.
In this paper we will investigate a knot theory in the hyper cubic graph Q4. In the
sequel we denote V(G), E(G) the sets of vertices, edges of G respectively. For other
knot theory in other graphs, see ([K-2]).

2 Definition

Definition 1 The hyper cubic graph Qn is a graph defined as follows;
(1) Q is the 1-skeleton of the n-cube 10, 1] x---x[0, 11 or

n
(2) n times of the complete graph K, on 2 vertices, that is, inductively defines by
Q1= K>
Qn = Qn—l X K2 (as a ngh)

Proposition 1 The hyper cubic graph Qn has the following properties;
(1) Qn is a n-regular,bipartite graph,
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(2) Q.(n = 2) is a Hamilton graph,

(8) Qu does not contain the complete graph K3 on 8 vertices and

(4) The minimum sheet number of the slice presentation ms(Qn) = msa(Qn) =n—1
([K-H-T])

(5) For n < 3 it is a planar graph, and for n > 4 it is a non-planar graph.

(6) The automorphism group of Qn, Aut(Qn) = [S2)°* = Sn x (Z2)" ([H]). So the
order of the group is n! x 2",

(7) The genus g(Qs) = (n—4)2"~3 + 1 ([B-Hj).

(8) The connectivity k(Q,) = n ([K1)).

(9) As it is a non planar graph, it is not adaptable by .({M-T]).

And Q3 s also non-adaptable proved by Yasuhara.

(10) Q4 is a self-linked graph ([K-1]).

(11) Qs is a self-knotted graph proved by S.Suzuki.

On more properties of @,, and detail, see ([K-1])
To investigate [Q4, A],we consider the complement C(A) := Q4 — E(A). Q4 is a
4-regular and A is a cycle. So as C(A), there are following 7 possibilities;
(Ck is a cycle of length k and the cup is the disjoint union)
(1) Cis (2) Cr2UCy (3) CroUGCs (4) GUG
(5) CgUCsUCy (6) CeUCsUC, (7) CsUCiuUC Uy
(Since Q,, is a bipartite graph, there are no cycles with odd length.)
To denote Q4 diagramatically, we use a "square nested diagram (Fig.1)”. And we
say a square part (or square part edge), a floating edge as Figure 2.
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3 Propositions and Theorem

Praposition 2 [t does not happen that Q4 — E(A) = CgUC,UCy and ANCy has
no adjacent vertices on A,
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Proof. If AN Cg = 8 vertices do not adjacent on ‘A, AN Cjy are every other vertices
on A. So they have same parity and Cg is defined by joining the vertices with same
parity. It is a contradiction. ]

Proposition 3 It does not happen the case C(A) = Ci12 U Cy.

Proof. The patterns of 4-cycle contained in the square nested diagram of @, are
the following C}, CZ, C3 (Fig. 3). If C(A) = C12 U Cy, C)2 and C; are disjoint each
other. So we delete C; and the edges incident to Cy ffom Q..

QD\

Gt Ce G
Fy. 3

(1)The case Cy = C}. The patterns of 12-cycles contained in Qq — C; (Fig.4) are
Clt, Cl2, C)? (Fig.5) (up to rotation and reversing of Q)
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(2)The case C; = C?. The patterns of 12-cycles contained in Q4 — C; (Fig.6) are
CHl, C%2, C% (Fig.7) (up to rotation and reversing of Q4)
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(3)The case Cy = C3. The patterns of 12-cycled contained in Q4 — C} (Fig.8) are
¢, G, 3 (Fig.9) (up to rotation and reversing of (4)
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It is necessary Q4 — E(Ci UC}§) (3, as above) connected to be C(A) = C12U Cy.
But all 11 cases of Q4 — E(Ci U C}j) as above is not connected. Therefore it does
not happen C(A) = C12UC,. (m]

Proposition 4 It does not happen the case C(A) = UL, Cj.

Proof. We choose four 4-cycles from { C}, C?, C3} (Fig. 3) in Q4 repeatedly
(repeated combination 3 H,) and dispose disjointly. There are 15 cases of choosing.
Each case of 15 choosings of Q4 — E(U., C{) can not happen or is not connected.
So it does not happen the case C(A) = Ui, Ci. o

Proposition 5 It does not happen the case C(A) = C§ UCE.

Proof. The patterns of 8-cycle in Q4 are C§ (i = 1,2,-- -, 6) as follows (Fig.10)

) oo
Fig. 10
ﬂ/\ —A‘%
G Gy c4 Ce
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We chooce two 8-cycles from Cj (i = 1,2,---,6) and dispose disjointly. There are
21 cases of choosings (gH2 = 21). Each case of 21 choosings can not happen or is
not connected. So it does not happen the case C(A) = Cj UCE. w]
In the following section we will show that the remaining cases (1),(3),(5),(6) happen
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and there are 5 classes of (1), 1 class of (3), 2 classes of (5) and 1 class of (6). So
we obtain a following.

Theorem 1 #{[Q.,A]} >9.

4 Example
(I) A uses 4 floating edges of a square nested diagram of Q..
__7_’« G % 1 1 1o i e
" . 3 t 7 7p) 1
> W - 3 ¢ i ! X 161 "
\34 ol ¢ 3 8l | 3
Y e L\ . J . - Fila.\\.
12 ? . o 2 9 2
) (2) 3 (&)

(1) C(A) = C3U CyU Cy and A N Cy has two pairs of adjacent vertices on A.
(2) C(A) =CsUCsUCy

(3) C(A) = C3 U Cy U C, and A N Gy has four pairs of adjacent vertices on A.
(4) C(8) = C UG

(II) A uses 3 floating edges of a square nested diagram of Q.

1 > 2 ! 2
15 7 f N & - 4
- v b
t6 15 1b 15
A 9 h)_1 F‘i 2.
)2 7
10 p T
2 3 in 3
(1) v (2)

(1) C(A) = Cy (i-e. C(A) = C) is also a H-cycle)
A sequence of vertices of Cjg according to the order of vertices of A is
[18310514112154716136912 1]
A sequence of length of the edges of Cys with respect to A is
[7575737353737335)
A sequence of vertices of A according to the order of vertices of C)g is
[183105141121547161369121]
A sequence of length of the edges of A with respect to Cig is
[7575737353737335]
So there is an automorphism ¢ € Aut(Q,) with p(A) = Cis
(2) €(2) = Ce.
A sequence of vertices of Cg according to the order of vertices of A is
[141185169147123615213101]j
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A sequence of length of the edges of Cfg with respect to A is
[3733575757373537]
A sequence of vertices of A according to the order of vertices of Cy¢ is
(147161369141121583105121]
A sequence of length of the edges of A with respect to Cje is
[33737353737575759)
So there is an automorphism ¢ € Aut(Q4) with p(A) = Cig

(III) A uses 2 floating edges of a square nested diagram of Q4.

¢ b L3 w1 o 1 1

A 1 3
oe—d ST 705 4 7 7
I~ P- N H ad
16 1 z 13 2 | (3
I
AN

A JALE 3 8 2 Fua 13.

q 3 ly

8 (1_) 5 6 @) [} 20 1 3) ] 2 (4-) 1 t (S) "
(1) C(A) = Cs UC4 U Cy and AN Cg has four pairs of adjacent vertices on A.
(2) C(A) = Cs U Cy U Cy and AN Cg has two pairs of adjacent vertices on A.
(3) C(A) = Cs.

A sequence of vertices of Cig according to the order of vertices of A is
[181121341569163105127 14 1]

A sequence of length of the edges of C)s with respect to A is
[7375757373757573]

A sequence of vertices of A according to the order of vertices of Cyg is
(18112134156916310512741]

A sequence of length of the edges of A with respect to Cj is equal to

that of Cg with respect to A.

So there is an automorphsm ¢ of @4 with ©(A) = Cig
(4) C(A) = Css.

A sequence of vertices of Cjg according to the order of vertices of A is
[11071613611492158514312 1]

A sequence of length of the edges of C)g with respect to A is
[7373757573737575

A sequence of vertices of A according to the order of vertices of Cig is
[11015813631292716514114 1]

A sequence of length of the edges of A with respect to Cg is
[7575737375757373].

We define an automorphism ¢ of Q4 as follows;
13— 1,6—10,11—154—8,9— 13,2 —6, 15— 3,
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8—>12,6—9,14—52,3—712—16,1— 5, 10 — 14,
7—11, 16 — 4.
(8) C(A) = CrU G

(IV) A uses 1 floating edges of a square nested diagram of Q,.
i

1 R 2 2
- - 7 = 3 Z ~15
N\ — A Niv d \ ——I.a’
T F7 A | |
0 | | s B sk s F:a“‘\”
Ly - ll-'\ :' L > gﬂl \ n" : AL
h 3 Pa 3 I . : 12 3 -~ b
(1) () (3) )

(1) ¢(A) = Cg UC4 U Cy and AN Cy has four pairs of adjacent vertices on A.
(2) C(8) = Cie.
A sequence of vertices of Cg according to the order of vertices of A is
(16111613271291438510154 1]
A sequence of length of the edges of C\¢ with respect to A is
[655355535553555 3]
A sequence of length of the edges of A with respect to Cj¢ is
the same as that of C)¢ with respect to Delta.
So there is an automorphism ¢ of @ with p(A) = Cjs.
(3) C¢(A) = Cis-
A sequence of vertices of Cy¢ according to the order of vertices of A is
[18154721169145123161310]
A sequence of length of the edges of Cyg with respect to A is
[7753575357773337]
A sequence of length of the edges of A with respect to Cjg is
the same as that of Cig.
So there is an automorphism ¢ of @4 with p(A) = Cis.
(4) C(A) = Che-
A sequence of vertices of C¢ according to the order of vertices of A is
(183613215491611145107 2]
A sequence of length of the edges of C¢ with respect to A is
[75375355753753585]
And a sequence of length of edges of A with respect to C'g is the same as
that of Cls.
So there is an automorphism ¢ of Q4 with-p(A) = Cig.
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(V) A does not uses floating edge of a square nested diagram of Q.

o 2 S 1 2 NG
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° (1) k * (@) ¥ : (3) (4)

(1) C(A) = Cs UCy U Cy and A N Cy has four pairs of adjacent vertices on A.
(2) C(A) = Cs UC4 U Cy and AN Cp has four pairs of adjacent vertices on A.
(3) C(A) = Cy UCy UCy and AN Cy has two pairs of adjacent vertices on A.
(4) C(A) = C3UC4UC, and ANCy has two pairs of adjacent vertices on A.

For the following example in I~V, we can make an automorphism ¢ sending each
other as follows.

(I —=1) — (IIT - 2) by (i) =i+ 2 where (15) = 1, (16) = 2.

(I-3)— (V-1) byp()=i(i=1,2,---,16).

(III-1) — (IV-1) by (i) =i (#=1,2,---,16).

(II1 —5) — (I — 4) by (i) = i + 4 where ¢(13) =1 etc.

(IV=1) — (V =1) by (i) =i+ 1 where ©(16) = 1.

(V-1) — (V-2) by ¢(i) =i+ 1 where ¢(16) = 1.

(V—=38) — (I = 1) by p(i) =1+ 2 where ©(15) = 1,¢(16) = 2.

(V —4) — (V —3) by ¢(i) =i+ 2 where (15) = 1,¢(16) = 2.

Remark. E.N.Gilbert already proved #{[Qs,A]} = 9 ([G]). But we could not
understand the structure of the complement of the Hamilton cycle from that paper.
So we studied #{[Q4, A]} from the other view point.

References

[B-H] L.W.Beineke and F.Harary : The genus of n-cube, Canad. J. Math. 17
(1965) 494-496

[G] E.N.Gilbert : Gray code and path on the n-cube, the Bell system technical
J. (1958) 815-826

[H) F.Harary : Graph Theory , Addison-Wesley Publ. Comp. Inc. U.S.A.
(1968)



[K-1]
(K-2]

[K-H-T]

[M-T]

[R-S-T]

[¥]

(29)

K.Kobayashi : Fundamental properfies of the hyper-cubic graph Qn,
preprint

: A knot theory in the graphs K, Knn, K222 and regular poly-
hedral graphs, preprint

M.Konoe, K.Hagihara and N.Tokura : On the page number of hyoercubes
snd cube-connected cycles (in Japanese) HFH#LEEFLEED vol.J71-D
No.3 490-500 (1988)

T.Motohashi and K.Taniyama : Delta unkotting operation and vertex
homotopy of graphs in R®, Pro. Knots '96 Tokyo, (S.Suzuki ed.), World
Scientific Publ.Co.,(1997) 185-200

N.Robertson,P.D.Seimor and R.Thomas : Linkless embeddings of graphs
in 3- space, Bull. A.M.S. vol.28 (1) (1993) 84-89

A.Yasuhara : Delta unkotting operation and adaptability of certain
graphs, Proc. Knot '96 Tokyo , (S.Suzuki ed), World Scientific Publ.
Co., (1997) 115-121



