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Introduction

It is one of the ultimate goals of topology to list up all the manifolds and
distinguish them. This problem has been solved for some 100 years for one
and two dimensional manifolds, namely, curves and surfaces. But the problem
for three dimensional manifolds(3-manifolds) turns out to be extremely difficult
and, in spite of very interesting and overview results, has not been solved yet.
One of the reasons for this may be that it had long been not known a ’good’
presentation for 3-manifolds which in turn gives a suitable mean for systematic
classification.

DS-diagram is a tool to enumerate three-dimensional manifolds, which may
be regarded as a generalization of the polygonal diagram which is very effec-
tive to classify two-dimensional manifolds, namely surfaces. Associated to DS-
diagrams are E-data, which describe DS-diagrams as an arrangement of symbols
and hence give a brief description of manifolds.

A complexity of E-data can be measured by the block number, which is
naturally defined for every E-datum, and take non-negative integer values[l].
Hence corresponding DS-diagrams are also stratified according to their block
numbers, and it is known that the minimum of the block numbers of a given
manifold equals to its Heegaard genus. In particular it has been known that
the manifolds of Heegaard genus 1, or equivalently which have block number-
(less than-)1 DS-diagrams, are so-called Lens spaces and completely classified.
Thus, a number of recent studies concentrate on classification of genus 2 three-
dimensional manifolds.

In this thesis, we review these important notions (part I), and we focus on
an unexplored class of E-data of block number 2, namely {/,,{,{;ad | cb) in the
notations of [4]; Earlier studies deals with (,{,l,{;ab | cd) [7), (r,!,7,!;cd|ab)
(4], for instance. For this class, we give a parametrization and under certain
condition distinguished those which really represent manifolds (part II). Then
for a specific series of manifolds we further investigate their geometric properties.

In particular, we explore their possible relations with simpler manifolds by
branched coverings and also check their fiberedness. Main idea in investigating
these problems is to deal with surfaces in a manifold, we rather deal with curves
that occur at the intersection of surfaces and spines. By the so-called intersection
numbers, most of these problems may be reduced to solving linear equations,
at least partly. One of our results will show that a series of manifolds turns out
to be the branched double cover of lens spaces. Finally, an invariant called the
torsion linking form is applied to distinguish some manifolds.
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Chapter 1

DS-diagrams and E-data

Spines provide suitable basis for a generalization of the polygonal diagram for
surfaces.

1.1 Spines

! Spines (in 3-manifolds), and in our context below, are singular surfaces which
has been simplified as much as possible with respect to its singularity, without
changing the topology of its complemet.

1.1.1 Polytope presentation

Definition 1 (CW-complex) A set P is said to be a CW-complez if it is the
union of sets E*(i =0,1,2,...,),

E':={ei,é,...},
each of whose elements €} is a map from the disk D* onto P such that
€4(8D%) C E*~(P) and €i(t) N E¥(P) = 0 for Vt € int(D").
0 . .
P:= U E = U U e;.
i=0 i

Let us call here a finite CW-complex, that is a finite set with respect to
its cardinality as a polyhedron. And for 2-polyhedra @, we also write the set
E°,E',E? as V, E, F respectively,

1We do not try to give the scattered original source for the contents of this section, instead
generally refer to the concise article (1), where the original references may be found.



For the next definition, let T}, I, and X, denote the following surfaces in

R3;
2:-: = {(z,y:2)€R3;$=0,y20}
z, = {(z,y,2) € R®%y =0,z >0}
T, = {(z,9,2) €R%}2=0}

Definition 2 Let M be a 3-manifold. A 2-polyhedron P(C M) is said to be
simple? if there is a neighborhood N(z) (in M) for any point = of P which looks
like one of the following three pictures:

NN QAN = =

Figure 1.1: Local pictures of the neighborhood of a point = € P.

In other words, there is a homeomorphism h: N(x) = R3 such that
1. i(N(@)n P) C =,.
2. h(N(z)NP) C T, US?.
3. h(N(@@)NP)CZ,UZfUZ;.

The set of all singular points of P, at which there is no R2-like neighborhood, is
denoted by S(P).

Proposition 1 ({5]) Let M be a closed 3-manifold and P(C M) be a simple
polyhedron such that M —P consists of some open 3-balls. Then the dual complex
of P is a singular triangulation of M.

Definition 3 A 2-polyhedron P is called a special spine if M — P is homeo-
morphic to an open 3-ball.

Some of the examples in the previous chapter falls into this category.

Let P be a simple spine of M, and B its complementary 3-ball. The pair
(V(P), E(P)) composes a 4-regular graph S(P) in P. If we cut M along P, then
S(P) branches to be a 3-regular graph G on 8B = §2, as is seen by the local
picture fig.2.1. Thus G naturally inherits graph structure (vertex, edge, faces)
from S(P); it preserves the 'vertex-edge-faces’ stratification. Let f denote the
inverse operation of this cutting, then f(G) = S(P).

2Simple polyhedron is also called as a fake surface, see [7].
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Definition 4 The triad (B, G, f) is called a DS-diagram, obtained by the simple
spine P, for the manifold M.

Heegaard splitting for 3-manifolds ensures the existence of simple spines:

Theorem 1 For an arbitrary 3-manifold, simple spine always exist. &

Proof Let M be a closed 3-manifold, and V; Uy, V2 be a Heegaard-splitting
for M, D; = (D1, Dia, ..., Dig) a complete meridian disk system for V; (i =
1,2).[9]. Then we may alwa.ys modify D, by an isotopy of Vi such that &D,;
crosses D1 transversally, or does not intersect at all, for Vj,k = 1,2, 3,.

Since V; (¢ = 1,2) cut along D; is a 3-ball B; by definition, M — —(8V,uD, UD2)
consists of a pair of 3-balls. Choose a pair of faces oy, 02, and glue the two balls
at the faces. On the boundary of the resulting one big 3-ball is there an attaching
diagram. Therefore . .

P=0V,UD, Ugy~og D2

gives a simple spine for M. O

Conversely, a three-tuple (B, G, f), which satisfies the same conditions as
the DS-diagrams do, defines a closed 3-manifold.

Theorem 2 Given o 3-ball B, a 3-regular graph G and a map f : 3B — 9B
such that f(OB) is a simple spine. Then the ball B whose boundary 0B is
identified by f defines a closed 3-manifold. &

By virtue of this theorem, hereafter by a 'DS-diagram’ we mean just the triad
of the ball and the graph and the gluing map, and drop the manifold M in its
original Definition 5.

Although DS-diagram should really be drawn spheres, in practice it is often
written in the plane. This may be justified by removing a point which is disjoint
from DS-diagrams, it may be identified with the plane.3

1.1.2 E-cycles, E-data and Arrangements

Definition 5 A cycle v of G is called an E-cycle of the DS-diagram (B, G, f)
i

1. For every point x € P — S(P), f~Y(z)Nvy = 0.

2. For every point ¢ € E(P), f~'(z) N~y consists of one and only one point,
and the other two points of f~1(x) are in the opposite regions separated

by .

3. For every point z € V(P), f~1(z) N~ consists of two and only two points,
and the other two points of f~(x) are in the opposite regions separated
by .

3The inverse of so-called stereographic projection.



In what follows, the ball B in (B, G, f) and an E-cycle v are assumed to
be given orientations in the following manner; We identify the ball B with the
standard 3-ball {(z,y, z) € R3;22+y%+22 < 1} such that the E-cycle « coincides
with the equator {z = 0}NAB. Then the orientation of B induces an orientation
for its boundary B. Now we define the orientation of the E-cycle -y by the one
induced by its upper hemisphere 8B N {z > 0}.

We call the hemisphere 3B N {z > 0} or BN {z > 0} as the upper hemi-
sphere, north side or northern part, etc. Same for the opposite part. In this
convention, four branched vertices which are identified as a single vertex v via
f are distinguished as follows.

By definition of E-cycle, two of the preimage of v under f are contained in +y.
The one which puts out an edge in the north (resp. south) side will be denoted
by v* (resp. v~). One of the preimages contained in the north (resp. south)
side will be denoted by T (resp. v).

Definition 6 The cyclic order of the vertices {vE;v € V(G)Nv} on the E-cycle
v is called an arrangement of (B, G, f;7).

Theorem 3 ([1]) Let (B,G, f) be a DS-diagram with an oriented E-cycle .
The neighborhood of a vertex v on 7y looks like either of the followings:

7 P
(L Ad® N m AR N

v
R et antle SHETRRERPRPR S =
CAD <

At D> Atk ]
BJ Al
c [
—>—i 2. S —-;—I—-)]-’- 5

Figure 1.2: The horizontal line in the middle presents the E-cycle. The capital
"N” and ”S” indicate the northern part and southern part, respectively; (L)
and (R) types defined in what follows below.

According to this theorem, every vertex is classified into either of the two
types in the figure, and a vertex, the preimage of whose neighborhood looks like
the picture in the left hand side of Figure 1.2 is said to be of ({)-type. If it looks
like the picture in the right hand side, then is said to be of (r)-type.

Definition 7 A map which assign a type (1) or (r) to each representative ver-
tices v € V(G) Ny is called a type function.
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Let A denote the arrangement of (B, G, f;7), and ¢ a type function. The pair
(A, @) is called an E-data for (B,G, f;7).

The values of type function, and hence E-data, are actually indicated by at-
taching the type values to each letter in the arrangement; for instance, v* of
(1)-type in an arrangement is denoted by v+.4

Definition 8 Let £ = (A, ¢) denote an E-data for a DS-diagram A. A block
of consecutive positive (or negative) vertices in the arrangement A is called a
positive (resp. negative) block. The number of positive blocks in A(A) is called
the block number of A, and is denoted as bl(A).

Note that not all E-data may be realized as a complete DS-diagram.[1]
The minimum of the block numbers of all DS-diagrams which represent a
given manifold is certainly an invariant of manifolds:

Definition 9 Let M be a closed 3-manifold. The block number BI(M) of the
manifold M is the minimum of the block numbers of all the diagrams which
present M, i.e.

BI(M) = min{bl(A) | M(A) = M}.

The following remarkable result has been established.

Theorem 4 ([4]) For a closed 3-manifold M except S® and S? x S!, the block
number equals to the Heegaard genus of M. &

Remark 1 It is shown in (1] that BI(S3) = 1 and BI(S? x S§!) = 0.

1.1.3 Regular moves for E-data

Example 1 In the pictures below, a local picture of a special spine is shown.
In it u, v are two consecutive vertices on the E-cycle. If we drag the vertical face
along the oriented E-cycle so that the vertex u passes v, then it causes a certain
transformation to the arrangement, evidently without changing the manifold it
represents.

Noting that this deformation produces a new vertex z, the resulting E-datum
is

wtlo™ o ut ot iyt eyt e

&

As the above example shows, simple spines admit certain local deformations
which does not affect the topology of its complement. The operations defined
in the followings give, when combined, all sorts of such deformations.

Definition 10 Let A be a DS-diagram with E-cycle and with an E-datum &-.
We define the following operations on A, which are called ‘moves’.

4However, if there is no fear of confusion, we often omit the signs and types, even overlines
and underlines of vertices.
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Figure 1.3: The blue line indicates the oriented E-cycle.

o Suppose that EA contains three subwords Wy = a~'bt, Wy = oMot and
Wz = z7'b~!. Then the first reqular move R, is the operation to replace
these subwords Wi(k = 1,2,3) by W] = bta~, W} = a*! and W} = b~
respecﬁivély. The reversed operation, which is always possible, is denoted
as Ry :

o Suppose that EA contains two subwords Wy = z~'r~" (or y~"z~!) and
W = zHy*™. Then the second regular move R, is the operation simply
to eliminate these subwords from the arrangement of €. The reversed
operation, if possible, is denoted as R; .

o Suppose that EA contains a subword W = g lyHzH 2y ry~lwtrgH,
Then surgery move S is the operation to eliminate this block from the
arrangement of €.

The resulting diagram from each move RE!, RE?, %1, is denoted by RE'A, REA, SE1A
1 1

respectively. If two diagrams A and A’ are related such that A’ is obtained by
a finite number of these moves on A, then they are said to be equivalent and is
denoted as A ~ A,

Theorem 5 Let A and A' be DS-diagrams with E-cycle. Then there is an
orientation-preserving homeomorphism from M(A) onto M(A') if and only if
A~A. &

Definition 11 A DS-diagram which can not be reduced in the block number by
the second regular move is said to be irreducible.

It will be useful to give the table of transformations which result from vari-
ants of R;.

Proposition 2 Let £ be an E-data given as follows;
£ = utoluly—e@ (1.1.1)

If € is altered so that ut and v~ are swapped then u~ and vt will be transformed

10
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in the following manner, depending on their types:

() | o(v) | u” vt
l I |z %7 | oFgH
{ r |z Tut | gtrytr
r I |u Tz | vtigtr
r r [u Tzt | gHytr

In the case that the initial € begins with u~v* and they be swapped, then the
transformation rules are as follows:

B(u) | d(v) | wt v~
l I | utta®™ | g~ "p~!
! r | utlgt |yt
r U | gttt | gty
r r | gtTutT | v

Examples using this transformation will be found in the next chapter (cf. Ex-
ample 7.)

11



1.2 Manifolds with block number 1

It is known that the only manifold which possesses the block number Bl =
0 is homeomorphic to S2 x S! [1]. Hence the first non-trivial problem is to
characterize the manifold M with bl(M) = 1. Let A be an irreducible DS-
diagram with an E-data, and have the block number 1.

In drawing DS-diagrams according to E-data, on account of theorem 5, it
is convenient to draw the graph with some rigidity, in such a manner that
consecutive edges whose corresponding edges on the E-cycle are also arranged
continuously there, are drawn straight (or smooth), while the other (third) edges
comes perpendicular to the straight line.

1.2.1 ¢(a) = ¢(b) =

Let a~ and b~ denote two points on the E-cycle which bound the only positive
block. Suppose there are p points in the block. Let a and 8 be the indexes of
a* and b*, respectively. Then one can draw the ’stalk’ that grows from at and
that reaches to b. This edge must be closed, since b appears somewhere middle
in the edge and it has to inject to b. Hence this edge encloses a region, but by
the assumption that the diagram A is irreducible, it cannot contain any 2-gons
inside the region. Therefore b should be adjacent to itself. And the rest of the

Figure 1.4: b is adjacent to itself.

diagram inside the E-cycle is uniquely determined.
To determine the order of negative points in the arrangement, let us trace
the edge that starts from 6~

Example 2 Let (B, G, f) be a DS-diagram with an E-datum

3-1t2+3tatga ...

12
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In the picture below, this E-datum is realized within the circle which E-cycle
bounds. the edge on the E-cycle that starts from b~ is the same one which
grows perpendicularly to E-cycle from 6% (cf. Theorem 5), hence the vertex
next to b~ is 17. In the same manner, the edge from the vertex 1~ is the same
one that goes perpendicular to E-cycle from 1+, thus the vertex next to 1~ is
27. Likewise the rest of the vertices in the negative block will be determined.

Figure 1.5: The order of the negative block is not determined a priori.

The complete DS-diagram is as follows

To determine the manifold it represents, it is convenient to construct the
Heegaard diagram. Let C denote the curve which encloses the positive block as
in the Figure 1.6 (The yellow-green curve). By splitting the ball B along this

13



curve C, we get two balls. Each ball contains one pair of disks to be attached

Figure 1.6: Splitting the ball along the disk which the yellow-green curve, we
have a pair of two 3-balls.

together, thus represents a solid torus, hence gives a Heegaard splitting. Let V;
denote the solid torus, obtained by attaching the northern hemisphere along the
disks in pair, and V; denote the other solid torus. The meridian disk of V; is
the region drawn with blue color in the Figure 1.6. Therefore the characteristic
curve, is the periphery of this blue disk(Figure 1.7). We see that it is (4, 3)-curve
on 0V;, hence the manifold the diagram represents is the lens space L{4, 3).

&

In a similar manner one can show that

Theorem 6 ([1]) Let A be an irreducible diagram of block number 1, with an
E-datum €. If there are 2p vertices in &, indezed as 1,2,3,...,p, and if £ begins
as

—lyHoH | =l

q P
then this E-datum is realizable and represents L(p,q). &

Remark 2 It is shown in [1] that there is no irreducible diagram when ¢(a) =
I, ¢(b) = r. The case ¢(a) = r, $(b) = r is reduced to be the case ¢(a) = ¢(b) =,
because by reversing the orientation of the ball, the type of vertices are all
inverted. '

14
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Figure 1.7: Left: The blue circle indicates the meridian disk of a solid torus.
Right: The meridian curve drawn on the surface of the other solid torus

1.3 Fundamental Group

Fundamental groups may be readily calculated by looking at DS-diagrams.

Let P be a spine for the manifold M. Suppose there are n vertices in S(P).
Then the corresponding DS-diagram has 4n vertices and, being 3-regular graph,
6n edges. Therefore, on account of Euler's theorem, we find that there are 2n
faces in the DS-diagram of M obtained by P.

Since M — P is just a 3-ball B, gluing one pair of its faces (only their interiors,
omitting boundaries) adds a generator each time, without any relation, to m;(B).
Therefore 71 (M — S(P)) is a free group of rank n + 1.

Relations occur when adding the remaining edges of S(P), bringing con-
tractible loops around them.

To each pair of faces assign numbers 1 to n. For a pair of faces indexed i,
take an arc A; which connects the faces inside the ball, oriented such that it
goes from the face in the south to the other in the north. A; will be a loop when
glued, and let x; denote its homotopy class.

As this local picture of spine shows, around each edge we arrive at

:nt-mjmj:] =1

Basically, the 4n edges all yield some relations, however, there is much redun-
dancy among them.

Example 3 (L(5,4)) Figure 2.10 displays the part of the DS-diagram of L(p, q).
Reading the relations of the regions at each edge on the E-cycle we obtain

15



Figure 1.8: The edge with red arrow indicates the E-cycle and the dotted red
plane an equatorial plane (a disk) which the E-cycle bounds in M — P. The
capital "N” and ”S” indicates the upper and the lower hemispheres.

MY =7
Y2Ya =N
Y3V4 = V2
Y4Y4 =73
Y5Ya = Va (1.3.1)
MY ="
MY =N
NN =7
MNMY2="
MNY3 = Ya-
It shows that
"M =1

Thus, the diagram represented has the fundamental group Z/5Z. This is com-
patible with the theorem 6 which shows that the manifold represented is L(5,4)(~~
L(5,1)).

&

For large diagrams, it is convenient to take some maximal tree of S(P). Since
a tubular neighborhood T of the maximal tree is just a 3-ball, attaching T to
M — S(P) does not affect the fundamental group [10]. Therefore new relations
only come from those edges which are not contained in T.

1.3.1 Fundamental group by dual complex

Spine is a dual of (singular) triangulation for a given manifold (Prop. 1). Hence
a face of spine corresponds to an edge of its dual complex.

16
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Figure 1.9: A part of the DS-diagram for L(p, ¢q) which interior to its E-cycle.

So one may use instead, the well-known presentation to obtain the group of
a triangulated manifold. The procedure proceeds as follows:[10]

1. (Formally) take all the edges as generators, and consider the free group
generated by these.

2. Take a maximal tree, and value all the edges belong to the tree as = 1.

3. Read relators from each face, i.e. the loop which encloses the face.

Example 4 (M in §6.1.1) In the DS-diagram below, a maximal tree is indi-
cated as the red edges. Omitting all edges of the maximal tree, the generators
are

A,B,C,D,E,1,J,K,L.

And the relators are

E
A

BK™!
CABCDEL™!
DA™!

EIB™!

Jc!
KIJKLD™!
Lr!

® NS RWN e O

17



Figure 1.10: The union of all the edges colored red is a maximal tree.

Those 2- or 3-gon relations erase the redundant letters as
E =1
C=D=J A
I=K=L = B

Thus remaining relators of number 3 and 7 now reduced to be
A*BA*B™!
B2AB%A7!.

This calculation will again be verified in the next chapter (Example 8).

&

Example 5 (L(p,q)) Consider the irreducible DS-diagram (B, G, f) of bl = 1
for L(p,q). Taking the whole consecutive edges in the negative block as a

maximal tree, we have the relators from each face as

-1
1. T1ZTq%T g1y
-1
2. T2TqTyro
-1
P—q. Tp—qZeT,
-1
p—q+1 Tp—g+1%¢%,
-1
p—q+2. Tp—q4+2T¢Ty
-1
P TpTeT,
p+l. mzezg’

18
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Figure 1.11: A picture of the positive block of the irreducible diagram of L{p, q).
A number in a circle indicates the index of the face.

We see that, ;24 = z,, where 0 < 7 < p satisfies 7 = ¢ + ¢ (mod p). By the
relation second from the bottom, =, = 1, hence The order of z; is the least
positive integer £ which satisfies

=—i§ (mod p).

From this, we see that the only knot which bounds and which may be embedded
as a simple arc in B are zo and z,.

L

Example 6 (Complement of a knot in L(2,1)) Let Ay be a knot obtained
by connecting the two 1-gons, one in the center, the other the farthest region
outside.

A. 22 =2, (1.3.2)
B. ToT) = T (1.3.3)
C. 7=z (1.3.4)

Excluding the third relation, we see that

7I'1(S3 - AD) = (wo,l‘l I .'L‘?) =27 Zz.

19
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Chapter 2

Classification of the

diagrams in the class
(I,1,1,1; ad|cb)

2.1 (,1,1,1; ad|cb) with a bridge

Assuming only ¢(a) = ¢(c) = [ necessarily entails a 'bridged’ arc, with which
we mean the two 'stalks’ which grow from a*! and c*! respectively meets and
divide the diagram. We will assign parameters for DS-diagrams in this class as
in the figure below; the restrictions for these parameters will be found to be

m2 g n)

R4 03

Figure 2.1: Parameters for the E-data are attributed as in this picture.

21
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a = f
m+1l+mg = mo+1l+(a—r1)
m+l+ny = na+1+4(8-5)

where 7 (or s) denote the number of arcs which bridges over two positive blocks
in the left (or the right region, respectively); The first equation come from the
2-gon face in the center with vertices b,d. We find

a = r+s8
m—-s = n -7

Thus the simplest case when a = 0, we have
r=8=0,m =n;. (2.1.1)
Here is the simplest diagram in this class.
Example 7 (m; = mg = n; =np =0) The E-datum is
a~atd*tb"c ctbtd-

This E-datum is transformed to be

Figure 2.2: The DS-diagram of M(0,0;0,0, 0, 0).

22
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+ g p— =t b= =
atd b c e hTd a
at(dtef Nerb™)e ¢td bta
(a* e )(d* o )ef e (ez67)(87c™)d™ cta- b+
(atdf)efdtoteter ez b0 (65 ¢ )d a"ctbt
(a*6F)eddt ot efer e b 67 (65 ¢ )d a " ctbt
Thus the resulting E-data

ctotatofesdt ot el eres b7 0, ¢ d"a

R

is of block number 1, and from the theorem in §4, we see that the manifold it
represents is L(8, 3).

&

Let us adopt the following notation for the manifolds represented by the DS-
diagrams we will consider:

Definition 12 A manifold represented by the DS-diagram in the class (I,1,1,!; ad |
cb) will be denoted by
M(r,s;m1, me,ny, ng).

22 a=0

In this case, we have, 7 = s = 0 and m; = n;. Let p denote the value m;(= n;).

221 my=0,n0=0
One finds that he cannot draw a diagram for p = 1.
Example 8 (p =2)
o~afofatd" by s oyl ot by
To calculate the fundamental group, we take a maximal tree as the union of the

edges with indices 6,7,9,13, 14,15, 16, which is drawn red below in the figure
2.3. Then the relations are

Z1T3 = 24
Zo2X3 = 5
T3T3 = Tg
T4T3 = T7
sy = g
Ty = T
T = T2
rgly = T3

23
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Figure 2.3: The DS-diagram for M(0,0;2,0,2,0) with a maximal tree indicated
in red color.

Eliminating all the z;’s except z3 and z7,

T7 = x§x7a:§
T3 = 2:3:1:3:1:3.

Therefore the manifold represented, which we denote by M, has the fundamental
group

(M) = (2,5, 2 = v’x’, y = ya?).
The abelianized group is apparently Z4 & Z4, hence

H](M,Z) = Z4 @Z4

Example 9 (p =4)

e e

a7 x5

A presentation of the fundamental group may be given by

m (M) = (z,y;7 = yPzyzy?, y = 2%yayz?).
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H(M) = Zys.
&

Remark 3 Notice that the graphs in the preceding two diagrams are rotation-
symmetric, that is Z/2Z acting on DS-diagram. There then expected to be a
branched-covering of a sphere branched over two points (this is not obvious).
Indeed in these cases they are, for there is an arc on the diagram which passes the
edges 13,16,10,16, 13, in this order. This branched covering may be extended
all over the ball it bounds, if its diameter between north and south poles is
removed:
B3 — some diameter ~ (5% — {0,00}) x (0,1]

Therefore the manifolds are certain 2-fold branched coverings of the manifolds
represented by the 'quotient’ diagrams. These quotient diagrams are of block
number 1, hence represent some lens spaces. Branched sets both upstairs and
downstairs are knots. See §2, chapter 3 for details.

Proposition 3 p can take only even integers.
Proof Tracing the edges in the negative block from the vertex b~, we find
b™ sy 2 xy Dy; Sy 2.

This alternating part of x and y terminates with 2, or y, depending on p
being even or odd. In the latter case, since the vertex a is adjacent to ya,, a~
appears again in the negative block between the vertices b~ and ¢~, but this is
a contradiction. O

The former case, every such DS-diagram may be realized as shown in the
figure 2.4 below.

Theorem 7 Let My := M(0,0;2k,0,2k,0)(k > 0)! denote the manifold repre-
sented by the DS-diagram with an E-datum

zf . afdt by a s g

negatz';; block
Then its fundamental group has the presentation
m(My) = (o, 8| B*(aB)fBa™?,a*(Ba) o).

Its homology group 1is,

Zgkys  k=0,2
Hi(Mi;Z)=Q Zy®Zogy2 k=1
Zo®Zsgya k=3
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Figure 2.4: E-datum realized as a DS-diagram.

where the congruence should be understood in modulo 4. &

Proof To calculate the fundamental group, it is convenient to think of Hee-
gaard diagram, as we have demonstrated in the example 2 for a lens space. We
just have to read the homotopy type of the homotopy type of the circumference
of the polygon which encloses the negative block (blue disk in Figure 2.4)

-1
o
B—)biylﬁ)xz-g)y3£)--~3)y2k_1f)zzkgcﬁ)C-gB,

where we understand, for example the path y; — ;4 is deformed to y; —
A — z;y,. Hence we see y; — ;41 — yi42 contains a path homotopic to a.
Therefore the whole loop is homotopic to

B?(aB)*pa
1Remember that the case k = 0 is treated in Example 16. This notice applies for the
following diagrams too, and will be omitted there.
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and should be counted as a relator. Likewise the other relator is
o*(Ba)*aB.
Abelianizing as o — a, 8 — b, we have relations

(k-1a+(k+3)b=0 (2.2.1)
(k+3)a+(k—1b=0. (2.2.2)

Since the determinant of this presentation matrix is 8% + 8, any summands in a
direct sum decomposition should be a subgroup of Zgy4s.

1. If k is even, then both (7.7) and (7.8) are irreducible relations. Subtract-
ing, the upper from the lower, we have ‘

4(a—b) =0. (2.2.3)
Taking a new basis (a’,4’) = {(a — b,b) we have

4o’ =0 (2.2.4)
(k—1)a" +(2k+2)' =0 (2.2.5)
Hence, for £ =0 (mod 2)

Hy(Mj; Z) = Zgrys

2. If k is odd, and is the equations are reducible. Since the difference of the
coefficients is 4, possible common divisor is 2 or 4.

For the former, & should be congruent to 3 modulo 4; £ = 3 (mod 4).
Setting &£ = 41 — 1 Then take a basis as (a’,6') = ((2[+1)a+ (2[ - 1)b, ({ +
1)a + ib),

.2 =0 (2.2.6)
1616’ = (4k + 4)5' =0 (2.2.7)

Hence -
Hy =Z; ® Lagta.

For the latter case, £ = 1 (mod 4). Putting ¢’ = (a — b), one of the
relations becomes, 4a’ = 0. Thus

Hy =Z4 ® Lok 2.

Collecting these the theorem is now established. O
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222 my=0,n>0
Proposition 4 p = (ny + 2) — 1 is impossible.

Proof Suppose p were congruent to —1 modulo n; + 2. Tracing the vertices
in the negative block, we would have the sequence

b — Ynat1 — Tngt2 = Yonasd — Tongpd —> - 2 Yp—1 S a7~
but this is a contradiction. O
Let us first study the cases when n, is even.

Example 10 (np; = 2) Let M(p,2) = M(0,0;p,0,p,2) denote the manifold,
and
m (A/I(pv 2)) = (avﬁ | r17r2)
be its presentation.
1. If p =0 (mod 4), put p = 4k(k > 0)
zfzf .. .zhd*
DTYTEL - Yse 1 TakV2 Y2 T3 - Ygk—2Tak—1 V1 Y1 T2 -+ Yik—3Tak—2C

+, + + o b bt g == - - -
"Y1 Y2 - YarC Y vzbld TUYy o Tgp_gUakd -

positi\:; block
The relators in the presentation of the fundamental group are
r1 = (B(Ba)¥)?BPa
e = a(af)fa?pL.
Its homology group is,
Hy(M(4k,2);Z) = Z3 @ Zog47-

2. fp=2 (mod 4), k>0

+ ot + At bz u—  p—c—utut  wt  etututpt
YT, - Typyod ? Y3 Tq - Yak-1%akC Y1 Y2 - Yak42C 1 vy b

negati:/:e block
-A7ETT Yy - Ty aYarTa 1V Y1 T2 - Yak a1 Takea
V2 Y2 T3 - - - Yak—2%ak—1Yak420 -
The relators are
ry B(Ba)* - f2a!
r2 = ofaB)*aB(Be)*!B(Ba)* - fo?p.
The first homology group is, for £ > 0
Hi(M(4k + 2,2); Z) = Zo ® Zrxyo.
Note that, M (2,2} is a Lens space L(18,7).
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L)

Remark 4 In the above example, we see that M(4;2,0) and M(6;2,2) have
the same homology group. In fact there are infinitely many such pairs; they
are M(0,0;4(7i+1),0,4(7i +1),2) and M(0,0;4(9 + 1) +2,0,4(9% +1) +2,2),
t=0,1,2,.... i=0,1,2,.... We will distinguish some of them in the next
chapter.

Suppose n; is even. Set 2v =ny+2and k> 0. For 0 < j < ny = 2v — 2,
let m; denote the maximal number such that

2mv+j <p.
Then, define a subword w; for such j and m; by
Wi =Y T Y204 %20 ‘yZ_mju+jx2—m,-u+j+l'
Example 11 (ny =4) Let M(—;p,0,p,4) denote the manifold.
1. If p=0 (mod 6), put p = 6k(k > 0).

Ty 73 ... zgatd* b wsvuy wevy wavy wovy wye”

negatiw;; block

UL

+, + + t g =
Ui Y2 - YgrC UL V3 V3 Vi b dT X weyga
N ——

negative block
r1 = (B(Ba)*)* %!
r2 = o?(fa)*~ faap ™!
Its homology group is,

7y =  Lask+20 k=0,1,3 (mod 4)
HI(M'Z)-{ Zys®lrgys k=2 ’
2. If p=4 (mod 6), put p =6k + 4(k > 0).
zizd .. .ad atdt bTwse”
negative block

YUY Us - VarpaC v T vF o b d™ 2T wevT wivs wovy wavy wayy, 440~

negatiﬁv; block

71 = () B
r2 = o (Ba)*(B(Be)*+! Y ap ™!
The first homology group is

7y — | Look+2s k=0,1,3 (mod 4)
H(M:2) = { Zy®Zskyr k=2 ’
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The following fact will be observed;

Proposition 5 Ifn, is even, possible p are only those which are not congruent,
modulo ny + 2, to odd numbers nor to any divisor of np + 2.

Proof Let 2v = ny + 2. Define sequence of integers {A;;7 € NU {0},0 < \; <
2v — 2} by

do=—1 (2.2.8)
Ais1 =X —(p+1) (mod 2v). (2.2.9)

Then we find
Xi=—-1-ip+1) (2.2.10)

for Vi > 0. Define a subword w; for 0 < i < 2v by

Wi = YiTit1Y20+iT204i+1 - - - Y2um +iT20m,; +i+1

where m; denotes the maximal integer which satisfies 2vm; + i+ 1 < p. Then
we may express the negative block in the E-data as follows

b™ Woy_ 1V, WA VAW, - - - (2.2.11)

The negative block closes if it comes to the vertex ¢~, whence the )\ should be
= p — 1: Suppose m is the least integer such that A, = —1. Then we have

(m+1)(p+1)=0 (mod 2v) (2.2.12)

On the other hand, it is a contradiction if the negative block contains a™, which
indeed happens in the following case: Let n be an integer such that A, = p—1.
Then

m+1)p+1)=1 (mod 2v) (2.2.13)

Therefore, if m > n for certain p, then the corresponding E-data cannot be
realized. We easily see that, if p + 1 divides 2v there is no such n, hence m < n
in this case. if (p + 1,2v) = d, then

(m+ I)T =0 (mod i (2.2.14)
(n+ 1)’%’1 =1 (mod 27: . (2.2.15)

The solutions are m = —1 and n = ((p + 1)/d)~!. In any case, m is the largest
as an representative element of residue classes {a; (a,2v/d) = 1}. Hence we have
m > n, thus leading the corresponding E-data inconsistent. The realizability of
the E-data corresponding to the 'sifted’ p will be shown in the proof of the next
theorem. O
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We now give the general result. Note that we write v, _; instead of b.

Theorem 8 Let 2v = ny +2. Assume p satisfies the conditions in the proposi-
tion 5. The general form of realizable E-data M(0,0;p,0,p,2v — 2) is

afzy ...zfatd* Wyytud .yttt v W
where W;(i = 1,2) denotes a negative block.

W, = U2y— 1WA, Ung Wi, - - - U, W, C
Wa = d ziwyunwy ... oxwia”

where the sequences {\},{\'} and integers m,n are those defined in the propo-
sition 5. &

Proof We only show the realizability of the diagram. For a subword wj, the
corresponding edge outside the E-cycle is denoted by w;, for example

YWy = Y;Z5+1Y 42, Zj+204+1 -

Define a sequence {A;} as the one which satisfies the same recursive relation
as the equation (2.2.9), with the initial value Ay = 2v. Then, by the preceding
proposition, the negative blocks may be expressed as

P, = bW\ Wy, .. W,
P, = d7zf W% W)"l - Wi

where m (or n) denotes the least integer such that A, = —1 (mod 2v) (or
AL = p (mod 2v) respectively). Let o denotes the index such that A\, = 1.
From this

Aagi =N+ 1. (2.2.16)

for Ay = 2v = Ay — 1. In the backward direction, since A\, = p + 1 and
Aa—1 =1+ (p+ 1), we also have
Aa—j =Am—j+1 (2.2.17)

for j > a. Furthermore, since Ap—q—1 = Am—a+@+1) = X+p=2w—-1+p=
A, —1l,wehavefori<m-—a

Am—o—i+1= N (2.2.18)

n—i*

Let P,, P, denote the block and edges outside the E-cycle which corresponds to
Py, P, respectively on the E-cycle. From the theorem 5, we see that they starts
from the vertices y;, 7. We now see, that in light of equations (2.2.16-18), the
blocks on P; all close. A part of this situation is drawn in the picture below. O
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Figure 2.5: All the negative blocks W’s close evenly with the corresponding
blocks outside the E-cycle.

Remark 5 Observe that when p = 0 (mod 2v), W does not contain any v;.
Hence we can transform the diagram to a symmetric one

a~zfzy ...xratetdtWiyTys . ytctofof L vt Wy
which is a class of M(0,0;p,v — 1,p,v — 1)

M(0,0;p,0,p,2kv) — M(0,0;p+k+1l,v—1,p+k+1,v-1)

-+

zizd .. zdatdt b wsv] wevs wavy wovy wic”

negative block
iyt .. ydctvivd i bt dmzT weyga”
—_———
negative block

And the diagram is necessarily a double cover of the lens space.
If we move the first positive block to the second one, we will have a diagram
of (I,1,1,1;] adeb), or equivalently of {{,{,!,!;cbad |).
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2.2.3 When n, is odd
Example 12 (n; = 1) There are two classes as in the table.
1. if p=0 (mod 3), settting p = 3k(k > 0), realizable E-data are
positive block
+

+ + b e e mm e me = = =
T, Ty ...zskd ? Yo xa ---yak_1x3k'v Y To ...y3k_2m3k_lc ,

negati;r; block
positive block

wtat ot g pb g~ = = -
“Y Yo - YsC VT ATy L T T,

™

(B(Ba)*)2 B2

re = o(af)foaf!.

Its homology group is,

o _ | Z3®Zsgys k=0 (mod 3)
HI(MI’I’Z)_{ Zisk+s k=1,2 (mod3) °

2. if p=1 (mod 3), setting p = 3k + 1(k > 0), realizable E-data are

positive block

—oter ot dYburzs . ws e e—
a”zT{Ty ... Ty, d ? Y2 T3 - Y1 T3kC

nega.tiw;;a block
positive block

WY Ve O AT 25 YR VYT TS - YT Yk
Then its fundamental group has the presentation

(M) = (o, B;71,72)

where the relators are

1 = B (ap)pa!
r2 = &*{B(aB) Y o?p™!
Its homology group is,

on | Zs® T k=1
Hl(erZ)_{ Znktrs k£=0,2,3,4,--- °
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One can verify these in much the same manner as in the theorem 5 above.

Remark 6 Note that m;(Mo(1,1)) = Z;3, and hence the manifold is some Lens
space. Successive application of the first regular move shows that it is in fact
L(13,8) ~ L(13,5).2

Example 13 (ny = 3) Let p(0 < p < 4) denote the residue of p modulo 5. The
following E-data are realizable and represent certain manifolds.

VTWIVWy

where the positive blocks V;* and V;' are (+ omitted for brevity, same in the
followings)

Vit = zzo--zpad
V2+ = ylyz--~y,,cu.1u2u3b.

and the negatives W, and W5 are

p Wi W,
(mod 5)
OYaZs5.. Ysk-1T56UBY3ITA- Y5k —2TSk—1

0 U2Y2T3 . Y5k —FTohk—2ULY1 T2 Y5k — 4 T5k—-3C gzlys oo  T5k—4Y5KQ
2y Y5 Tk — z UIYZT4.. Ysk—2T5k—

1 byaTs . . . Ysk—-1T5kU2Y2T3 - . - Y5k—3Tok—2C USRI AYSKEGKFLIIYITS Yok -2Tok—1

2 byaTs. . Ysk—1ToR UL YIT2. Ubk+1T5k42 dZ1Ys..- Toh—qYskTEL41

UIY3T4- - Y5k ~2T5k~-1C ungzzan-ysk-azsk-zyskna
T1Y5---Tohk—4YSk TS+ 1UIY1 L2... Y5k +1T6k+2
3 byaTs . . . Ysk—1Z5kC UY2TI-. Usk+2T5k+3U3 YT Yok — 286k — 1 Y54 +38

Let us denote the manifold represented by an E-datum with ny = 3,p = p
(mod 5) in the above table by M3 ,. Then a finite representation for its funda-
mental group may be given by

m(Ms,) = (o, B;71,72)

p ™ T2
(mod 5) .
0 (ﬂ(ﬁa)k)4ﬁza'l a(aﬁ)"azﬁ‘l
1 (B(Ba)*)? P~ a(aB)**1(B(Ba)*)? - fo B
2 | (B(B)*)B(Ba)*+! (B(Ba)*) e a(af)*ap(Ba)* - fo?p!
3 (B(Ba)*)f?a a(aB)*o(B(Ba)**)?B(Ba)* - fo?p

Its homology group is,
y4 (mod 5) | H](Ma,p; Z)

0 Zoak417
1 Zs1 k457
2 Z3 ® Laik+24
3 Zy k423

2If we try to move b™ to the positive block along the orientation of E-data, mo will increase
by 1.
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&

Theorem 9 Let 2v — 1 = ny + 2. The general form of realizable E-dataum
M(0,0;p,0,p,2v —3) is, for p# —1 (mod 2v —1)

o .. .oratdt Pyytut .. ytctotl
=z ... d* Pyfys .. oyfetotof o od bt P,

where P;(i = 1,2) denotes a negative block. To describe them ezplicitly, we
further define \; and X;(0 < A\, M, < 2v — 1) for i > 0 by the same recursive
formula

Ais1 = Ai—p—1 (mod 2v —1).

with the initial values Ao = 2v — 1,y = 2v. Then

P = b—W):)v;1WAl N4

P = d_:l:l_W,\a’l),\ll le oWy e
where A (or X, respectively, same in the following) denotes the first member in
{Ai} (or {Xi}) such that A\=~(2v—-3) =1 (or N =p). &

Proof The proof will be a special case of that of theorem 10 in the next section.
Hence omitted here. O

Remark 7 (Hierarchy problem) In the above diagram, if we move b*, by
the regular move (I), to the positive block which contains a*, at first sight the
diagram belong to the former case we have studied. However it turns out this
operation increases mz, which is not captured within our scope so far, as shown
below. if np =1 and p =3,

R N R TS P S ST S SR S
Sy ctuT b dT aTys e xT 2T atdTh
Y3 L& s 1 %2 T3 Ya

cyletutd ot el yram e el ohatdt e b gt
\v/ faa’ y
eyrtetuttdTler oty et e o et d e e by
\,—/ -
Y2

L yHeetut dle Tyl b et +la+l HateH efleyteslerth

¢t ¢ 3 ¢

neg. pos.

Thus the resulting code is

+ + +
y1y2y363c utdTzyyza"h 93152“"25”3 d

and this is a diagram with p =4 and ms = 1,n, = 0.

Suppose the last half of the positive block between ¢~ and d~ is read as

..ctufuf ... ufbt. It suffices to prove that we may always move u}’s and b*.

However, when ms + ng is an even number we find it convenient to have ms
and n2 equal, in order to symmetrize the diagram.
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23 my>0

By obvious symmetry, if ny = 0, it is actually the same E-data as of my = 0.
So let us start with ny = 1.
Example 14 (n2 = 1) M(0,0; 2k, 1,2k, 1) is realizable.

iz} . zhatutdt-bTyrzl . ynuTTiys . Takore

TR I Tt A TR L e VYO YR Vi Vool iR T

[ )
Example 15 (n; =2) M(0,0;%,1,k,2) is realizable.
z¥zd . afatutd by . . yqwsuTw,
-y;"y; YT ot T dT 2T wevT w1v5 wavs Wavy WaYgk 40"
)

23.1 mpy>1

We will work on diagrams with different parametrization as it gives simpler
description than the original parametrization.
Let the E-data is given by

NG 2 S A4 SYTAE T VAR Tasl o (2:3.1)

where P, P, represents negative blocks, and the letters on their edges are

Pl = yp—z..yq_
P2 = T

m...xq.

This class represents M(0,0;q — 1,p1 —¢—1,g — 1,p2 — g2 — 1).

Theorem 10 The E-datum M(0,0;9—1,p1—q—1,9—1,p;—q2 —1) is realizable
if and only if q does not divide py +p2. &

Proof Define two sequences of integers A; and A} for non-negative integers &
by

k+p2 (mod q)
Ak+1 + P1-

Ao+

!
Akt1

Let us denote by {z}, the least positive integer which is congruent to £ modulo
q. Then setting
A = po, (2.3.2)
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Py may be written as, omitting their types and signs,

P = Ypa¥pa—q - - - Y{ M} {1 4+p1—g} B (Ar4p1—29)} - - - T{AL}
Y\ +pa—a}¥ (N +p2—2¢}

For this block to have Y, in its end, A;, must be congruent to —p, for some m.
For this is to be realized it is necessary and sufficient that z; does not appear
before y;” appears in the block. =7 appears if \, = —p;. We find by (2.3.1)

with (2.3.2) that

Xn
An

m(p1 +p2) = —p2
(n—1)p1 +np2=—p

We see that the second equation is equivalent to n(p, +p2) = 0. Hence, as long
as the modulus g does not divide p, + pa, we have m < n. Hence the negative
block is realized.

37



2.4 Torsion Linking Form

We saw, most of the manifolds we have listed may be distinguished by inspect-
ing their first homology groups. However, since any arithmetic progressions
with distinct common differences intersect infinitely often, we cannot but have
unboundedly many pairs of homologically identical manifolds.

2.4.1 Definition

To obtain a ’homologically well-defined’ torsion linking form, one has to have
the common period for the. Thus we are lead to the local linking forms.

Definition 13 ([8]) Let M be a closed orientable 3-manifold. Let z and y be
l-cycles in M and let n be an integer such that nx bounds a 2-complez c(z).
Then the torsion linking form at denoted as lkps : Hy(M;Z) x H\(M;Z) = Q/Z
is defined by
c(xz) -
tae (e, f) = S2L.

Since (torsion) linking form is a symmetric bi-linear form[6], if written in
a matrix form, the base change induce symplectic transformations: Let lk; be
the torsion linking form with respect to a base b. By an invertible base change
b = BY/, linking form is transformed to be

lky = ¢B(lk;)B (24.1)
However we will present linking forms in a row verctor in what follows.

Example 16 (L(p,q)) Let L(p,q) = V1 U V2 be the standard construction by
two solid tori.> Let D; C V; denote a disk which the meridian m; bounds. Let
us calculate the linking form of the generator of the homology group and itself.
One representative element is {;, whence

(=gD1UDs) L _ ¢

P
Homologous to {; is —gly + smz, which when multiplied by p bounds D;.* So
the self-linking form of ri; is

k= (=D V(A —ps)Ds) - (—gla) _ (1—ps)(=q) _ _

g
p p 4
3The so called Lens spaces are those which obtained by gluing two solid tori (handle bodies
of genus 1) along their boundaries.

lk(ll, ll) =

Definition 14 Let Vi and V2 be two copies of an oriented solid tori, and h a homeomorphism
from 8V to 8V which takes a meridian of V2 to a (p, q)-curve on 8Vy. Then, the lens space
L{p, q) is (any homeomorphic image of ) a sum of Vi and V2 whose boundaries are identified
with each other by h such that two orientations of 8V and 8Va are compatible; This specified
construction is often denoted as

Lp,g) =V UV,

4By the convention explained in the preceding footnote, the attaching homeomorphism

h : 8V — 8V; must be orientation-reversing. Then compare with the calculation carried out
in the proof of Proposition 4.
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However, the linking form is not an algebraic invariant. For any p’ with gem(p,p’) =
1, p'ly is also a generator of Hy, whose self-linking is

k= (=p'e¢D1UP'D2) -p'ly pq
p p

&

As is seen by this example, torsion linking form of itself is not an invariant
but the set of values of linking forms of a specified pair of cycles is trivially an
invariant. And in the above case, it is precisely the set of quadratic residue or
quadratic non-residue, depending on p being the residue or not.

In general, the homology groups of genus 2 manifolds have two summands.
So in applying torsion linking form, we have to know the automorphism groups
of abelian groups (of at most two summands).

Proposition 6 Let d < m < n, where d denotes gcm(m,n).

GL(2,Z,) if m=n
A(Z,, ®Z,) = ZF x L) d=1 . (2.4.2)
(ZX ®DZg) x (Z) D Zyg) d>1

Proof Consult (3]. O

2.4.2 Demonstrations

As we have remarked in §, M(0,0;4(7¢ + 1),0,4(7% + 1),2) and M(0,0;4(9 +
1) +2,0,4(9¢+1)+2,2),i=0,1,2,.... have the same first homology groups.
So,

Question 1 Are M(0,0;4k,0,4k,0) and M(0,0;4! +2,0,4! + 2,0), k = Ti +
1,{ = 9¢ + 1, different manifolds?

Let us study this problem by torsion linking form.

Example 17 (Determining the torsion linking form) Let M = M(0,0;4(7i+
1),0,4(7: + 1),2). An E-datum for M is

¥z} .. . zhdt

bTYZTY - Yak-1%ak%2 Y2 T3 - Yak—2Tak-191 Y1 T2 -+ - Yar—aBak—2C”

Fut ot etotorbtdozou- . Tm u—a-
Y Yz - YakC VT v 0T dTI YL Ty gygaT.

positiv‘t; block
By the decomposition, Let D, denote the disk which the first negative block
b7Ys T4 - Yap-1TakV2 Y2 T3 - Yak—2Tak—1Y1 Y1 T2 -+ Yap—3%ag—2C
and the arc CB (drawn in the figure below) bounds. Similarly, the disk that
the other negative block and the arc AD bounds will be called D;;. We assume
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Figure 2.6: Notice the new vertices A, B, C, D written in capital letters.

that Dy;’s are attached so that the straight (not winding) line segment on the
diagram which connects two b’s, and two d’s are ’preferred longitudes’ of each
handle. Note that this does not affect the value of the torsion linking form. Let
us use the following notation to denote 2-complexes:

(a, b,¢,d) := aDyy, UbDyy U cDgy UdDos.

Tracing the boundary curve of Dy, it is observed that it winds about each
handle only when it crosses 8D, (resp. Dj2) at the vertex which sits behind
at (resp. c¥t), with respect to the orientation of the E-cycle. In fact, 8Dy,
winds about the (1, 1)-handle 3k times and (1, 2)-handle 3k + 1 times.

bTY3 Ty - - Yap—1ZakV2 Y2 T3 -+ Yar—2%ak—1Y1 Y1 T2 - - - Yak—3Tax_2C

Therefore, 8D2; bounds, inside the "upper ball’ 3k D;; and 3k + 1 D,,. Recall
that the relators in the presentation

Trl(]v!) = (aaﬂ I 7'1,"”2)
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1 = (B(Ba)*)’ e

2 = a(af)*a?f1.

Let us write abelianized a, 8 as a,b, respectively. Then the homology type of
3D21 is
[8D21) = (3k — 1)a + (3k + 5)

Hence, we have
(8k —1)a + (3k + 5)b = 8(3k, 3k +1,1,0) (2.4.3)
Now we can read 8Dy, directly from the E-datum.
AT Yy - Ty gYaZa Vi U T2 - Ve Tare
V3 Y3 T3 -+ Ygi—2Ta1—1Ya1420 -

Winding about Dy, handle (resp. Di2) occurs at the letters —zy— (resp. —yz—
and AD). Hence, combining this with

[0D32) = (k + 3)a + (k — 1)b (2.4.4)
we have
(k+3)a+(k-1)b=08(k+1,k0,1) (2.4.5)
Collecting () and ()
(8k —1)a + (3k + 5)b = 8(3k + 1,3k, 1,0) (2.4.6)
(k+3)a+(k-1)b=08(k+1,k,0,1) (2.4.7)

The generator element for Z,-part and Zgy..7-part is 5a —4b =: ¢’ and —a+b =:
b, respectively. In this bases,

2’ = 9(3,-1,-1,3) (2.4.8)
Ok +7)b' = B(~2k — 2,2k + 1,k + 1, -3k — 2) (2.4.9)
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k(d,a') = %(3,—1,—1,3)-(5a—4b)

= 3(3x5+(-1)x (1)

1
2
1
2

k(a',b) = =(3,-1,-1,3) - (—a+b)

23 (1) + (-1 x 1)
=0

k(¥,d') = 9k+7( —2k - 2,2k + 1,k + 1,3k — 2) - (5a — 4b)

- gk1+7{(—2k —2) x5+ (2k+1) x (—4)}

= 9k+7( 18k - 14)

=0

(b, ') 9k+7( 2k —2,2%+1,k+1,-3k —2) - (~a+b)

1

9k+7{
4k +3

9% +7

(-2k —2) x (-1)+ (2k+1) x 1}

Hence we have

lkps = (lk (@’,a"),1k(a’,b'), kk(V',a"), (¥, b)) (2.4.10)
4k +3
"9k +7
In the same manner, for N = M(0,0;4{ + 2,0,4! + 2, 2) we find

4 +5
n+9

= ( 10,0, 5—=) (2.4.11)

= ( ,0,0, —). (2.4.12)

&

Example 18 (Demonstration to distinguish manifolds) Let M; = M(0,0; 4(7:+
1),0,4(7i +1),2) and N; = M(0,0;4(9% + 1) + 2,0,4(9% + 1) + 2, 2). Note that

Hy(M;) = H\(N;) = Zz ® Zesiv16

The torsion linking form is

1 28i+7
o = (30055757

1 36i+9
ky, = (510,0,m)-
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If there is a homeomorphism f : N; — M;, then

k(v = Lk,

Therefore (not equivalently though) instead we can argue with the automor-
phisms of H;.

o If i is an even number, then 63+ 16 is also even, hence the two summands
in H; has a g.c.m. 2. Therefore possible automorphisms of H; are

a — a,a+(635+8)b
b — gbgb+a

with g an integer satisfying (¢,63¢ + 16) = 1 and j = i/2. In particular,
g must be odd. Comparing each component of lk, we can restrict the
automorphism. So doing for the first component, with e =0 or 1,
1
5 = lkf(Ni)(f"(a)l ft(a))
= lkn,(a + €(635 + 8)b, a + €(635 + 8)b)
= lkn,(a,a) +€(635 + 8)lkn, (a,b) + €(63; + 8)lkn, (b, a) + €2(63; + 8)%lky, (b, b)
_ 1 2/po s 2 36i+9
= —-+04+0+¢°(635+38) 631+ 16

2

1 .
= 3 + €2(63; +8)36z +9
1

e%j
2 2
Hence, especially we see that if j is odd, € must be zero. Comparing the
second {or equivalently the third) component,

0 lkf(Ni)(f‘(a)’f‘(b))

Ik, (a + (635 + 8)b, gb + da)

e+

T2

where 4 is 0 or 1. Combining these, if j is odd, the possible automorphism
is

(a,b) — (a,qgb).
and if j is even

(a,b) — (a+,gb), (a + (637 + 8)b,a + gb).

e If 7 is an odd number, then 63i + 16 is also odd. Therefore possible
automorphisms is only
(a,b) — (a,qb) (2.4.13)

where ¢ an integer with (g,63: + 16) = 1. In particular, ¢ can be an even
number say 2, hence the comparing second components lk does not yield
anything.
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Example 19 (Demonstration Continued) It still remains to compare the
fourth component. If the automorphism is of type (a,b) — (a, gb), then

Thus,

must

28i+7
63i + 16

]kf(Ni)(f"‘(b)’ fs (b))

qzlkNi (b’ b)
, 36049
63: + 16

q

281+ 7
36i+9
be a quadratic residue modulo 637 + 16. Let us first check the numerator

and the denominator of this fraction has any common divisor with the modulus.

1.

Let (p, g) denote the greatest common divisor of p and q. By the Euclidean
algorithm, we see that

(28i+7,63i+16) = (4i+1,63i+16) = (di+1,3i+1) = (3, 3i+1) = (5,1) = 1

Hence, the numerator is relatively prime to the modulus.

. For the denominator

(366 + 9,63 + 16) = (4i +1,63i + 16) = 1

Hence, the denominator is also relatively prime to the modulus.
It is desirable to determine the quadratic residuocity of each number.

. However, in comparing the fourth component, it is sufficient for us to know

whether 287 + 7 and 367 + 9 can be both residues or both non-residues,
at the same time. Thanks to the fact these numbers are co-prime to
the modulus, we can find the reciprocal number of each number by the
Euclidean algorithm:

63i + 16 1
=2 2.4.14
28+ 7 + 3+ 1_’_—11— ( )
T

and, one solution to z — (7¢ + 1)y = -1 is (z,y) = (74, 1), hence

1 63i+7

24 ==
3+#T|_- 28i + 3

Thus, (28i + 7)~! = 63i + 7 = —~9. In the same manner,

(363 +9) x 7 =36-7i + 63 — 4(63i + 16) = —1
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Therefore inspecting whether the value
(28 +7)(36i +9)"' = —7(28i+7)

is a residue or not decide that the two numbers in consideration are both
residues are non-residues. Moreover, since the quadratic residuocity is
preserved if we invert the number, and for —(28i+7)~! = 9 = 32, we just
have to check if 7 is quadratic residue or not. This is of better practical
use.

For example, when ¢ = 1, 637 + 16 = 79 is a prime. Applying quadratic

reciprocity law, we find
X (7
79 7

Hence we may conclude, 28¢ + 7 = 35 and 36¢ + 9 = 45 cannot be a
quadratic residue at the same time, thus corresponding manifolds M; and
N; are not homeomorphic.

1 | 63¢ + 16 | primeness | residuocity | square of
1 79 P N -
2 142 2x71 N -
3 205 5% 41 N -
5 331 P N -
6 394 2197 R 912
7 457 P N -
9 583 11 % 53 N -
10 646 2%17%19 N -
11 709 p N -
13 835 5% 167 N -
14| 898 2% 449 R 289°
15 961 312 R 3312
17| 1087 P N -
18| 1150 |2+5%2%23 N -
19| 1213 P R 4752

Table 2.1: The table of the quadratic residuocity of 7 modulo 63+ 16, where R
(or N) stands for "being a residue” (or not being a non-residue, respectively).

&
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2.4.3 Appendices

Here are some useful facts in computing quadratic residue symbol (Legendre
symbol). (finite) continued fractions is an analytic expression of the Euclidean
algorithm.

Proposition 7 Let p,q be two integers. For x,y € R, Suppose that the regular
continued fraction ezpansion of p/q is given as follows;

1
I—)=bo+ i

1 bt bz+...b"_1+§

[bo;blyb2,"' 7bn—l)b‘n]

Then a solution to
, pr—qy=1
is given by (z,y) = (m,n), where m,n are computed by
PP — gbn = (-1)"

1
[bo;bl,b%---,bn-—l,’b"]
n

See [2).

Theorem 11 Let p,q be two distinct odd primes. Then the following formula

holds:
(B0)-cr

o
See (2] for the proof.

Proposition 8 Let p,q be two distinct prime numbers, and a an integer. Then
a is also a quadratic residue modulo pq if and only if a is a quadratic residue
modulo each of p and q.

Proof (Z, x Z,)* = Z,. Let a = 2? (mod p),= y* (mod g). Then (a,a) =
(z2,y?) = (z,y)?, which is a square element in zy. O

Remark 8 Elementary and effective proof: We only have to find k& which sat-
isfies

k = z (modp)
k = y (modg).
po—gb=y—z

It always have a solution since p and ¢ are relatively prime, and there is an
effective algorithm to find it.
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Chapter 3

Geometric Properties

3.1 Exploring Klein bottles
Let us begin with M(0,0;2,0,2,0).}

Example 20 Recall that its first homology group is Zs @ Z4. Hence there
is a cycle which bounds when doubled, whence the existence of an embedded
unorientable surface is expected.?

Indeed the manifold admits a Klein bottle as is seen by connecting the arcs 7-7-
3-3-as in the diagram. One may also notice 2-8-8-2 also bounds a Klein bottle.
We can make a 2-fold branched covering along this Klein bottle, the resulting
manifold killing its Z, part.

&

We want to know if the existence of even order element in the homology groups
implies whether an unorientable surface is embedded or not.

3.1.1 Method of DS-diagrams

DS-diagrams provide a suitable computational basis for the geometry of surfaces
as well as curves.

Let M be a 3-manifold with a simple spine P. Any properly embedded closed
surface F' may be isotoped so that F N (M — P) is a disjoint set of embedded
disks. Hence the surface may be represented by the curve of intersection FNP.

Let v := FN P be a simple closed curve on the sphere, on which our diagram
is supposed to lie. Let us think of some computable means to handle these
geometry.

!The contents of this section was implied by Professor Ishi'i.

2Suppose v is a cycle which bounds when doubled. Let 4’ be obtained by slightly per-
turbating 2 so as to make it a simple closed curve. Since we can spread a Mobius band
inbetween, the surface it bounds, if any, must be unorientable.
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Figure 3.1: The diagram of M(0,0;2,0,2,0).

One such way is to count the intersection of 4 with the edges of the spine P.
Let 7; (resp. ¢;) denotes the number of +(resp. —) crossing points on the edge
i. Let p; := r; — ¢, q; := 7; + ¢;. Then we consider, in a face o

Sr=Yas Yn0
1€d0 i€8o i€do
Irreducibility requires what is more:
T = Z C;i &
i€do
The condition of being a closed curve is to be 0 modulo 2, that is for all faces ¢
Zqi =0 (mod 2). (3.1.1)
i€c

Example 21 (M(0,0;0,0,0,0)) Let us consider the example by the simplest
description using ¢’s. We name edges with numbers from 1 to 8 as in the figure
3.3. The equation (1-0.1) becomes
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Figure 3.2: An embedded Klein bottle is drawn.

0. @3+qr=0
1L 21 +q2+g3+q+gs+gr+qs=0
2. Q1+g+g=0.
3. g2+g3+qat+2¢s+g+ar+gs=0
4. gat+gs+ge=0
Then essential restrictions are
@+gs = 0
a+qr =
with dependence relations
2tg = @
ga+ge = Gs-

The rank of this equation is 4. Let us write the solution as a row vector
(111,92,q3:¢14)-

1. (0,0,1,0), thatis g1 = ¢2=qs =¢5s =gs = gs =0 and g3 = g7 = 1.
Then the surface represented by the data (0,0,1,0) obtained by natural
inclusion into Z represents a torus.

2. {0,1,0,0) is again a torus. We can streamline the argument by simply
calculating the Euler characteristic. There are 2 edges which involves
intersection, thus 2 vertices. There are 3 edges inside the diagram; those
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Figure 3.3: The DS-diagram of M(0,0;0,0,0,0).

outside the E-cycle are attached to the these inside. And 1 face. So the
Euler characteristic x is

x=2-3+1=0.

Hence the surface is either a torus or a Klein bottle. But we see that the
surface has the diagram

ABCA™'B-¢c™!
hence is orientable. So the surface is a torus.
. (0,0,0,1) also represents a torus.

. (1,0,0,0) has a bit complicated structure. There are four cases according
to the two undetermined crossings. Connecting arcs in any manner, there
are ’equi-oriented’ arcs, which shows that the diagram contains a Mdbius
band and that the surface is non-orientable.

&
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3.1.2 Back to the Klein bottles

We demonstrated in the previous section how surfaces in a manifold represented
with a DS-diagram may be treated.

Note that we always have a trivial solution which represents a 3-ball, ob-
tained by substituting 1 for all ¢;, where an edge ¢ is contained in some fixed
maximal tree, and 0 for the other edges. Therefore to look for non-orientable
surfaces efficiently, it is sufficient to look for solutions which is independent from
this solution Since in Z, sense,

Example 22 (M(0,0;2,0,2,0)) We first take a maximal tree of the spine; say,
edges of index 1, 2, 4, 5, 9 and 12 (See Fig. 3.1). And evaluate associated g¢;’s
as 0; g1 = g2 = q4 = g5 = g9 = q12 = 0. Inspecting the central 2-gon yields

q13 =0.

We may also find
% =q14 =0.

Other relations coming from the remaining regions are

8+a+qas=0 (3.1.2)
293 +qs =0 (3.1.3)

g6 +297+qs =0 (3.1.4)
@3+ +q6=0 (3.1.5)
211 +q16 =0 (3.1.6)
2915 +q16 = 0. (3.1.7)

The solution to this system of equations is ¢35 = ¢7 and ¢;; = q15. Thus one
of the simplest (=less winding on the graph) Klein bottle looks like as in the
figure 3.1; the red curve corresponds to the solution g3 = g7 = 1.

&

In the following we assume k& > 2, and all the equations should be understood
in mod2.

Theorem 12 Every manifold M(0,0;2k,0,2k,0) contains a Klein bottle. &

Proof Let the E-data of M(0,0;2k,0, 2k,0) be given by

+ o F gt =
zy.

negati\g block
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We name the edge between a~ and z7 as the edge 1, and z7 and z as the
edge 2, and so on. Then we take the maximal tree as below;

n=g==qr=0
g0 = =0
Q2k+2 = G2k+3 ) (3.1.8)
Gak+5 = Qak+6 = *** = Qok+4 =0
gok+6 =0
First we have, from the assumption,
@2k+4 = Q6k+7 = Q6k+8 =0 (3.1.9)

Considering the balance equation for regions in the right half of the diagram,

2g6k+9 + Gok+10 + Gok+11 - + Gak+s =0 (3.1.10)

For those, rectangular regions

G6k+9 = G2k+6 = Q6k+11 = Q2k+8 = ' = Q8k+5 = (ak+2 = q8k+47 (3.1.11)
a7 + + gsie45 =0
8k+7 t+ Qak+4 + G6k+5 (3.1.12)
2¢ok41 + Qa4 =0
From which we find, setting o = ggq9 = Gor46 = -+,
=a
G6k+5 (3.1.13)
Qak+a = 0.
Likewise for the left half
202k+5 + Q246 + G2ks7 + o+ Qapes =0
Q2k+5 = Q6k+10 = Q2547 = G6k+12 = ' ° = Q4k+1 = Q8k+6 = Q4k+-3 (3.1.14)
Qak+3 + gsk+8 + g2k+1 =0
gsk+8 + 296k+5 =0
From which we find, setting 8 = ger+9 = gar+re = -+,
Rr+1 = Q
(3.1.15)
gsk+s = 0.
Thus both the equations (3.1.10) and (3.1.14) reduces to the identical
(k—NDa+k-1)8=0 (3.1.16)
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Therefore the dimension of the solution is 1 or 2, according to = even or odd;

Q=g=--=qyu=0)
Q2641 =0
Q2k+2 = Q2k+3 = Gok+4 =0
Q2k+5 = Q2k+7 = Q2k+9 = *** = Qak4+3 = B
Q2k+6 = Q2k+8 = Q2k+10 = *** = Qgk42 = &
Qak+4 =0
Qak+5 = Qak+6 = - = gek+4 =0 (3.1.17)
g6k+5 = O
Gok+6 = Gok+7 = ok+8 =0
Qek4+9 = &
G6k+10 = Q6k+12 = *** = qgk46 = B
d6k+11 = G6k+18 = *** = qak47 = QX
gsk+s =0 |
G6k+9 = Q2k+6 = Q6k+11 = Q2k48 = *** = Q8k+5 = Jak+2 = Q8k+7
g8k+7 = Q2k+3 =0
Qak+5 = Qak46 = = gok+4 =0 (3.1.18)
gek+6 =0
gok+6 =0

To prove that the surface is Klein bottle, we just have to compute the Euler
characteristic.

Unorientability may be checked by looking at two edges both of which connects
with each other at the edge 6k + 5. Since they have the same orientation, the
polygonal diagram it bounds contains a Mébius band, hence unorientable. O
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3.2 Branched Covering

Let us first review the earlier remark 3 where we stated;

Example 23 M(0,0;2,0,2,0) is a branched double cover of L(4,3) branched
along the red arc drawn in the figure 3.5. The branched knot downstairs

Figure 3.4: The double cover of the diagram in the Figure 3.5

represents the trivial element in the fundamental group, and thus a trivial knot
in L(4,3).3 However, when pushed into one of the handlebodies of its Heegaard-
splitting, it looks like as follows; Fig.3.6.

First, we will show that we may make the unknotted arc, which is in fact
the branched set, 'float’ to the surface of the diagram, and make it slip through
the surface to lower into the northern hemisphere.

It is obvious that through non-singular region of the spine the arc may slip
through, but through those singular points such as edges a suspicion may occur.
But it turns out we may make it simply go through the edges in this case as
well, as shown in the following series of schemes; The point is that the edges to
be crossed all have the corresponding edges on the E-cycle, thus adjacent to the
extra land adhered to the positive block. This extra part attached to the initial
northern hemisphere, gives a space for the arc to slip through the edges.(Figure
3.9) Thus we simply get the knot in northern hemisphere as in figure 3.8, whose
picture in a solid torus is figure 3.6 given earlier.

3i.e. homotopic to the zero map.
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Figure 3.5: 'Quotient’ diagram of Figure 3.4., with respect to the m-rotational
action.

In the same manner we obtain the following.

Theorem 13 Let p : M(0,0;2k,0,2k,0) = L(2k + 2,2k + 1) be the branched
covering explained above. The branched knot downstairs bry may be ezpressed
in the braid presentation as in the followings;

2k-1 2k 2k-1 \ L2k
bry = (H o []: ] bi) [Te:,
1 1 2 2

where the braid is closed in a solid torus so that each strands runs parallel to
the longitudinal curve. &
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Figure 3.6: Branched knot expressed in a braid form. It lies in the solid torus
such that each braid runs parallel to the longitudinal curves.

3.3 Fibered knots

Closely related to the topic in the previous section is the problem of fibered-ness.
There has been known an efficient algorithm based on the following argument.*

Let K be a fibered knot in M, and let F; denote the fiber over a point
e?™t ¢ S! of the base space. As in the preceding section, F; may be isotoped
so that Fy N (M — P) consists only of some disks. Suppose further that F,
intersects the spine P transversally for Vt.> Then each point of the spine P
intersects a unique fiber, whose level value then gives a coordinate to P. So the
layer pattern {F;} of fibers naturally gives a global (2-dimensional) coordinate
to P by their level values and the tangents of the cross sectional curves.

Proposition 9 Suppose K is a fibered knot in a rational homology sphere M,
i.e. there erists continuous map f from M — K to S'. Then f induces a global
coordinate for S(P).

Combining ideas from differential forms we can get an effective algorithm to
construct a fibration or detect fiberedness of a knot complement.

Proof Weregard M as a differentiable manifold. This does not lose generality,
since any two differentiable manifolds are homeomorphic if and only if they are
diffeomorphic. Let M be a rational homology sphere, i.e. H;(M;R) = 0. Then
for any knot K we have Hy(M — K;R) & R. If K is a fibered knot, then there
exists a continuous map fo : M — K — S'. This fy satisfies that its pull-back
integral extended over a loop « which represents a generator of Hy (M — K;R)

/7 d(folz))

4This method was shown to the author by professor Ishii.
5Except in a small neighborhood of each vertex of S(P), to be precise.
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Figure 3.7: Branched knot, still inside the ball.

Figure 3.8: Branched knot risen up to the surface.
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Figure 3.9: The orange part which sticks out in the southern hemisphere, is one
of the reclaimed lands’(drawn in orange and blue in the right picture down) of
the northern hemisphere
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does not vanish. Such an integral represents an element of the cohomology
group of the complement
HY(M - K;R),

or exactly, de Rham cohomology: whose precise definition is
Hip(M - K;R) = {w € QY(M - K);dw =0}/ ~,

where Q! denotes the set of 1-forms and ~ denotes the equivalence relation
defined by

w) ~wg & Jp: M — K — R such that wy — ws = d¢.

And de Rham’s theorem states this cohomology group in terms of differential
forms is in fact isomorphic with the singular cohomology.
If we normalize each non-trivial form w € H'(M — K;R) as

/w:l
¥

exp(2mi /z w), (3.3.1)

1]
with a base point 2y € M, is well-defined on M, since its value does not depend
on multiple circulation along +.
Now, if we write A, arg f for the variation in argument

then for Vz € M

Ayarg f = [ d(f(@)
Y
then the equivalence relation ~ among 1-forms is equivalent to

"fi~ oo Ayarg fi = Ay arg fo"

Hence, as an representative element we may take those f as the monotonic one
along certain loops. And the algorithm is based on the assumption that we take
the edges of DS-diagrams for the ”certain loops”. O

Let us see how this algorithm may be effected on DS-diagrams in practice.

Example 24 (L(2,1)) Recall the irreducible diagram for L(2,1). We name the
edges in the diagram by numbers as in the figure 3.10.

Suppose we want to fibrate the complement of the knot Ag, obtained by con-
necting two O-faces in the diagram in the figure 3.10. Let X be the complement
of Ag in L(2,1), i.e. X := L(2,1) — Ap. We have seen that in order to construct
a fiber it suffices to find a function f, defined on cycles H;(X) which satisfies

L#m¢u
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Figure 3.10: The inner part of the diagram of L(2,1).

But by the monotonicity assumption, if we put

f(z) = exp(2mig(x)) (3.3.2)

then g(z) is a linear function for every edge of the diagram. Now let us call the
increase in g(z) along the edge i as a pitch, and denote it by a;. In particular,
a pitch of the edge 3 in the diagram is taken to be 1: az = 1 (This is the
non-trivial loop v in the preceding argument). Other restrictions come from
the fact that the function g is a homomorphism from H,(X) (or m; (X)) to R.
Therefore, the sum of pitch along null-homologous cycle (null-homotopic loop)
is 0. Let us apply this condition on the region 1 below, to determine the pitch
of the edges on its boundary.

Figure 3.11: The vertices marked with triangle, resp. circle, is a local minimal
point, resp. local maximal point.

a1 +ay+ax+az—az—as+az+ag=2a1+2a3=2+2a, =0 (3.3.3)
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From the region 2, we have

—a1+az+a4=0 (3.3.4)
Hence we have
a = -1
az+ay = =-1
Taking
ay =04 = —%.

we can define a set of level values for all the edges, and by connecting the same
level point with smooth curves, we see that the boundaries of any face have only
one maximal point. Hence, the resulting flow is a gradient flow.

o< b

ol
2l

b b

Figure 3.12: The vertices marked with triangle, resp. circle, is the local minimal
point, resp. maximal point.

L )

Example 25 (L(4,3)) Let us take the a;(i = 1, 2,3, 4) as basis for the solution.
The equations reads

1. 2a7+a3 = —-a;+az—as

2 ar—ag = —az+ag

3. ag = a1+a2+2a3+as
0 eag = a)+az+2a3+as

If we set a) = z,a2 = y,a3 = 2,84 =@, £ +y + z+1 = 0. The values of the
other edges are

ag=c—a (3.3.5)
ar=z+2y+z+1=y (3.3.6)
agg=c+y+2z2+1==z (3.3.7)
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In choosing specific values for (z,y, z), we should bear in mind that, it is better
the disk less undulating. So doing, we only have to keep track of the sign
changes; One choice would be

edge | value | sign || edge | value | sign
3 < - 1 T _
1 z - 7 y -
2 Y -2 -y +
3 z - -6 |la—z| +
4 a - 5 1 +
5 1 + 6 [z—a| -
—4 -a + 7 Y -
-8 | —=z + 8 z -

Table 3.1: The table of sign changes of each pitch of the edges in the region 3
(left) and 1 (right).

1 1 1 1
(zyyyzya) = (_51_51_51 _'4')'

The resulting curve on the diagram has 4 vertices, and 6 edges including the

loga
/ L.B

Figure 3.13: The level curves drawn in the region 1. The cross indicates a
singular point.

arc Ap inside the ball, and one face. Hence
x=4-6+1=-1

Therefore the fiber surface is found to be a punctured torus T°2.
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3.3.1 A series of fibered knots in lens spaces

For what we want to show in this section, let us simply observe the simple
parametrization for the pitch in the DS-diagram of L(6, 5).

Example 26 (L(6,5)) Let the irreducible E-data of L(6,5) be given by (theo-
rem 6)

atatatafatates ey zr o os
Let us assign numbers 1 to 12, to the edges on the E-cycle. The edge between
z; and z will be assigned 1, and = and z7 assigned 2, and so on along the
E-cycle. Let a; denote the pitch of the edge 4. It turns out that

agg=-l-z-y—z—-u

Q2 =2

az =y

ag =2z

as =u

:=z (3.3.8)
ag=—-l—-z—-y—z—u-—v
Qg =2

a0 =Y

ap =2z

a2 =u

Now the The cyclic character of this parametrization may be considered to
reflect a certain relation with the automorphism group of L(6, 5), or equivalently
its fundamental group.

&

Let the lens space L(2k + 2,2k + 1) be given by the DS-diagram (B, G, f),
presented in the figure 1.11 (§1, chapter 1), and let Ay denote an unknotted arc
in B which connects two faces with index 0.

Theorem 14 L(2k + 2,2k + 1) — Aq are all fibered spaces. &

Proof Let indices for the edges and the faces of diagrams be given as in the
figure 1.11. Then we have the following equations for the set of pitch as follows:
in it m = {z} means that p < m < 2p with m =z (mod p).

e From the region 1,

2
af—gray + D ak = —(a1 — Gp—gi1 + apy1) (3.3.9)
k=p+3
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o From the region I({ = 2,3,...,¢ —1);

Q{—1g+2} ~ @{—(1-1)g+2} T Qp—q+l — QU

¢ From the region g;

p—1

O(—(q-1)+2}) = Gg + )Gk + Gpy1

o From the region ¢ + 1;

O{—(a+1)g+2} = 01 ~ Gg+1

k=1

o From the region {(l =g+ 2,9+ 3,...,p);

O{-ig+2} ~ O{—(1-1)3+2} = Q- — Qi

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

Now set ¢ = p — 1, since this is the case which we need, Solving these we find
that Substitute these into the equation (), we find that the sole restriction is

p—1
o=
k=1

0.

(3.3.14)

We may specify the sign changes of the set of pitch as in the following table.

Then we have

edge value sign
g=p-1 Qq -
1 73] -
2 asz -
P ap -
p+1 1 +
—{-(g-1)g+2} —0{—(g—1)§+2}—p—1 | T

Table 3.2: —i in the 'edge’ column means that ” —a;”, a; with reversed orienta-

tion.

The only relations among the variables are

p—2

1+ Za,-
i=1
p—1

1+ Zai
i=1
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edge value sign
1 ay -
{=2+2} | a(-qeyp-1 | -
-2 —az +
-+2) | —(ep-a1) | +
p+1 ap +
p+2 ap —ay -
p+3 as -
p+4 a3 -
2p Qp—-1 -

Table 3.3: —i in the ’edge’ column means that ” —a;”.

. Hence, we may take, for example

1

G2 =a3=-'=Qp_1 = —=.

In these values, to determine the genus of this fibered knot, we trace a level
curve at the level 222 + ¢ (¢ > 0 sufficiently small) starting from 0-th face in the
north. The level curve starting from the 1-gon at the north pole first crosses

g
g
P

Figure 3.14:

the edge p + 1, and then crosses the edge 2, since the level value decrease by %
along the edge 2 from %1. Then it goes around the region 1 and crosses edge
p + 3 to enter the region 2. There again crosses the edge 2 on the E-cycle to go
into the region p — 1 outside the E-cycle. Notice that this curve is sandwiched
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between the level curve of (p—1)/p and of (p —2)/p, which passes the vertex z;
and z2, respectively. It turns its way to come in to the region 1 again crossing
the edge 7 on the E-cycle, and since the all the level curves whose level values
are in the range [7’;—2, 221} injects into the edge 9, of level values cro The rest
of the pass is determineé’ by its track in each region inside the E-cycle. By this,
we see that it intersects with E-cycle 3 times, and the number of the edges of
the path inside the E-cycle is 5. Notice that as the boundary of the knot Ag,
there is one point in the 0-face, and also one edge Ay interior to the ball of the
DS-diagram. Thus, the Euler characteristic is :

B+)-B+1)+1=-1

If we attach a disk to the knot A, then the Euler characteristic will increase
by 1, hence a torus. O

Figure 3.15: The level surface at the level value 2—;3 is drawn in red.
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